MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrnltled Structured version   Visualization version   GIF version

Theorem xrnltled 11043
Description: "Not less than" implies "less than or equal to". (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
xrnltled.1 (𝜑𝐴 ∈ ℝ*)
xrnltled.2 (𝜑𝐵 ∈ ℝ*)
xrnltled.3 (𝜑 → ¬ 𝐵 < 𝐴)
Assertion
Ref Expression
xrnltled (𝜑𝐴𝐵)

Proof of Theorem xrnltled
StepHypRef Expression
1 xrnltled.3 . 2 (𝜑 → ¬ 𝐵 < 𝐴)
2 xrnltled.1 . . 3 (𝜑𝐴 ∈ ℝ*)
3 xrnltled.2 . . 3 (𝜑𝐵 ∈ ℝ*)
42, 3xrlenltd 11041 . 2 (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
51, 4mpbird 256 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2106   class class class wbr 5074  *cxr 11008   < clt 11009  cle 11010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-le 11015
This theorem is referenced by:  supxrub  13058  infxrlb  13068  ixxub  13100  ixxlb  13101  supicclub2  13236  radcnvle  25579  xrge0infssd  31084  infxrge0lb  31087  liminflbuz2  43356  icccncfext  43428
  Copyright terms: Public domain W3C validator