| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrnltled | Structured version Visualization version GIF version | ||
| Description: "Not less than" implies "less than or equal to". (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| xrnltled.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrnltled.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| xrnltled.3 | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| Ref | Expression |
|---|---|
| xrnltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnltled.3 | . 2 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) | |
| 2 | xrnltled.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 3 | xrnltled.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 4 | 2, 3 | xrlenltd 11178 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2111 class class class wbr 5089 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-le 11152 |
| This theorem is referenced by: supxrub 13223 infxrlb 13234 ixxub 13266 ixxlb 13267 supicclub2 13404 radcnvle 26356 xrge0infssd 32744 infxrge0lb 32747 pimxrneun 45534 liminflbuz2 45861 icccncfext 45933 |
| Copyright terms: Public domain | W3C validator |