MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrnltled Structured version   Visualization version   GIF version

Theorem xrnltled 11218
Description: "Not less than" implies "less than or equal to". (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
xrnltled.1 (𝜑𝐴 ∈ ℝ*)
xrnltled.2 (𝜑𝐵 ∈ ℝ*)
xrnltled.3 (𝜑 → ¬ 𝐵 < 𝐴)
Assertion
Ref Expression
xrnltled (𝜑𝐴𝐵)

Proof of Theorem xrnltled
StepHypRef Expression
1 xrnltled.3 . 2 (𝜑 → ¬ 𝐵 < 𝐴)
2 xrnltled.1 . . 3 (𝜑𝐴 ∈ ℝ*)
3 xrnltled.2 . . 3 (𝜑𝐵 ∈ ℝ*)
42, 3xrlenltd 11216 . 2 (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
51, 4mpbird 257 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109   class class class wbr 5102  *cxr 11183   < clt 11184  cle 11185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-cnv 5639  df-le 11190
This theorem is referenced by:  supxrub  13260  infxrlb  13271  ixxub  13303  ixxlb  13304  supicclub2  13441  radcnvle  26305  xrge0infssd  32657  infxrge0lb  32660  pimxrneun  45457  liminflbuz2  45786  icccncfext  45858
  Copyright terms: Public domain W3C validator