![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrnltled | Structured version Visualization version GIF version |
Description: "Not less than" implies "less than or equal to". (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
xrnltled.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrnltled.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrnltled.3 | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
Ref | Expression |
---|---|
xrnltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnltled.3 | . 2 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) | |
2 | xrnltled.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
3 | xrnltled.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
4 | 2, 3 | xrlenltd 11356 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 class class class wbr 5166 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-le 11330 |
This theorem is referenced by: supxrub 13386 infxrlb 13396 ixxub 13428 ixxlb 13429 supicclub2 13564 radcnvle 26481 xrge0infssd 32768 infxrge0lb 32771 pimxrneun 45404 liminflbuz2 45736 icccncfext 45808 |
Copyright terms: Public domain | W3C validator |