| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrnltled | Structured version Visualization version GIF version | ||
| Description: "Not less than" implies "less than or equal to". (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| xrnltled.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrnltled.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| xrnltled.3 | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| Ref | Expression |
|---|---|
| xrnltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnltled.3 | . 2 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) | |
| 2 | xrnltled.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 3 | xrnltled.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 4 | 2, 3 | xrlenltd 11247 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 class class class wbr 5110 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-le 11221 |
| This theorem is referenced by: supxrub 13291 infxrlb 13302 ixxub 13334 ixxlb 13335 supicclub2 13472 radcnvle 26336 xrge0infssd 32691 infxrge0lb 32694 pimxrneun 45491 liminflbuz2 45820 icccncfext 45892 |
| Copyright terms: Public domain | W3C validator |