![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrnltled | Structured version Visualization version GIF version |
Description: "Not less than" implies "less than or equal to". (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
xrnltled.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrnltled.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrnltled.3 | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
Ref | Expression |
---|---|
xrnltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnltled.3 | . 2 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) | |
2 | xrnltled.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
3 | xrnltled.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
4 | 2, 3 | xrlenltd 10445 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
5 | 1, 4 | mpbird 249 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2107 class class class wbr 4888 ℝ*cxr 10412 < clt 10413 ≤ cle 10414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pr 5140 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-br 4889 df-opab 4951 df-xp 5363 df-cnv 5365 df-le 10419 |
This theorem is referenced by: supxrub 12471 infxrlb 12481 ixxub 12513 ixxlb 12514 supicclub2 12645 xrge0infssd 30105 infxrge0lb 30108 liminflbuz2 40969 icccncfext 41042 |
Copyright terms: Public domain | W3C validator |