| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infxrlb | Structured version Visualization version GIF version | ||
| Description: A member of a set of extended reals is greater than or equal to the set's infimum. (Contributed by Mario Carneiro, 16-Mar-2014.) (Revised by AV, 5-Sep-2020.) |
| Ref | Expression |
|---|---|
| infxrlb | ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infxrcl 13254 | . . 3 ⊢ (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ∈ ℝ*) |
| 3 | ssel2 3932 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
| 4 | xrltso 13061 | . . . . 5 ⊢ < Or ℝ* | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → < Or ℝ*) |
| 6 | xrinfmss 13230 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | |
| 7 | 5, 6 | inflb 9399 | . . 3 ⊢ (𝐴 ⊆ ℝ* → (𝐵 ∈ 𝐴 → ¬ 𝐵 < inf(𝐴, ℝ*, < ))) |
| 8 | 7 | imp 406 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 < inf(𝐴, ℝ*, < )) |
| 9 | 2, 3, 8 | xrnltled 11202 | 1 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3905 class class class wbr 5095 Or wor 5530 infcinf 9350 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 |
| This theorem is referenced by: infxrre 13257 infxrmnf 13258 infxrss 13260 ixxlb 13288 limsupval2 15405 imasdsf1olem 24277 ovollb 25396 ovolsslem 25401 infleinflem1 45350 infxrlbrnmpt2 45390 infleinf2 45394 infxrlesupxr 45416 inficc 45516 ressiooinf 45539 liminfgord 45736 cnrefiisplem 45811 ioorrnopnlem 46286 ovnlecvr 46540 ovn0lem 46547 ovnhoilem1 46583 ovnlecvr2 46592 |
| Copyright terms: Public domain | W3C validator |