Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infxrlb | Structured version Visualization version GIF version |
Description: A member of a set of extended reals is greater than or equal to the set's infimum. (Contributed by Mario Carneiro, 16-Mar-2014.) (Revised by AV, 5-Sep-2020.) |
Ref | Expression |
---|---|
infxrlb | ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infxrcl 13113 | . . 3 ⊢ (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*) | |
2 | 1 | adantr 482 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ∈ ℝ*) |
3 | ssel2 3921 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
4 | xrltso 12921 | . . . . 5 ⊢ < Or ℝ* | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → < Or ℝ*) |
6 | xrinfmss 13090 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | |
7 | 5, 6 | inflb 9292 | . . 3 ⊢ (𝐴 ⊆ ℝ* → (𝐵 ∈ 𝐴 → ¬ 𝐵 < inf(𝐴, ℝ*, < ))) |
8 | 7 | imp 408 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 < inf(𝐴, ℝ*, < )) |
9 | 2, 3, 8 | xrnltled 11089 | 1 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∈ wcel 2104 ⊆ wss 3892 class class class wbr 5081 Or wor 5513 infcinf 9244 ℝ*cxr 11054 < clt 11055 ≤ cle 11056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-sup 9245 df-inf 9246 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 |
This theorem is referenced by: infxrre 13116 infxrmnf 13117 infxrss 13119 ixxlb 13147 limsupval2 15234 imasdsf1olem 23571 ovollb 24688 ovolsslem 24693 infleinflem1 42957 infxrlbrnmpt2 42998 infleinf2 43002 infxrlesupxr 43024 inficc 43121 ressiooinf 43144 liminfgord 43344 cnrefiisplem 43419 ioorrnopnlem 43894 ovnlecvr 44146 ovn0lem 44153 ovnhoilem1 44189 ovnlecvr2 44198 |
Copyright terms: Public domain | W3C validator |