MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxrlb Structured version   Visualization version   GIF version

Theorem infxrlb 13114
Description: A member of a set of extended reals is greater than or equal to the set's infimum. (Contributed by Mario Carneiro, 16-Mar-2014.) (Revised by AV, 5-Sep-2020.)
Assertion
Ref Expression
infxrlb ((𝐴 ⊆ ℝ*𝐵𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝐵)

Proof of Theorem infxrlb
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infxrcl 13113 . . 3 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
21adantr 482 . 2 ((𝐴 ⊆ ℝ*𝐵𝐴) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
3 ssel2 3921 . 2 ((𝐴 ⊆ ℝ*𝐵𝐴) → 𝐵 ∈ ℝ*)
4 xrltso 12921 . . . . 5 < Or ℝ*
54a1i 11 . . . 4 (𝐴 ⊆ ℝ* → < Or ℝ*)
6 xrinfmss 13090 . . . 4 (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
75, 6inflb 9292 . . 3 (𝐴 ⊆ ℝ* → (𝐵𝐴 → ¬ 𝐵 < inf(𝐴, ℝ*, < )))
87imp 408 . 2 ((𝐴 ⊆ ℝ*𝐵𝐴) → ¬ 𝐵 < inf(𝐴, ℝ*, < ))
92, 3, 8xrnltled 11089 1 ((𝐴 ⊆ ℝ*𝐵𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wcel 2104  wss 3892   class class class wbr 5081   Or wor 5513  infcinf 9244  *cxr 11054   < clt 11055  cle 11056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-pre-sup 10995
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-po 5514  df-so 5515  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-sup 9245  df-inf 9246  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254
This theorem is referenced by:  infxrre  13116  infxrmnf  13117  infxrss  13119  ixxlb  13147  limsupval2  15234  imasdsf1olem  23571  ovollb  24688  ovolsslem  24693  infleinflem1  42957  infxrlbrnmpt2  42998  infleinf2  43002  infxrlesupxr  43024  inficc  43121  ressiooinf  43144  liminfgord  43344  cnrefiisplem  43419  ioorrnopnlem  43894  ovnlecvr  44146  ovn0lem  44153  ovnhoilem1  44189  ovnlecvr2  44198
  Copyright terms: Public domain W3C validator