MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxrlb Structured version   Visualization version   GIF version

Theorem infxrlb 13295
Description: A member of a set of extended reals is greater than or equal to the set's infimum. (Contributed by Mario Carneiro, 16-Mar-2014.) (Revised by AV, 5-Sep-2020.)
Assertion
Ref Expression
infxrlb ((𝐴 ⊆ ℝ*𝐵𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝐵)

Proof of Theorem infxrlb
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infxrcl 13294 . . 3 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
21adantr 481 . 2 ((𝐴 ⊆ ℝ*𝐵𝐴) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
3 ssel2 3973 . 2 ((𝐴 ⊆ ℝ*𝐵𝐴) → 𝐵 ∈ ℝ*)
4 xrltso 13102 . . . . 5 < Or ℝ*
54a1i 11 . . . 4 (𝐴 ⊆ ℝ* → < Or ℝ*)
6 xrinfmss 13271 . . . 4 (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
75, 6inflb 9466 . . 3 (𝐴 ⊆ ℝ* → (𝐵𝐴 → ¬ 𝐵 < inf(𝐴, ℝ*, < )))
87imp 407 . 2 ((𝐴 ⊆ ℝ*𝐵𝐴) → ¬ 𝐵 < inf(𝐴, ℝ*, < ))
92, 3, 8xrnltled 11264 1 ((𝐴 ⊆ ℝ*𝐵𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wcel 2106  wss 3944   class class class wbr 5141   Or wor 5580  infcinf 9418  *cxr 11229   < clt 11230  cle 11231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-sup 9419  df-inf 9420  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429
This theorem is referenced by:  infxrre  13297  infxrmnf  13298  infxrss  13300  ixxlb  13328  limsupval2  15406  imasdsf1olem  23808  ovollb  24925  ovolsslem  24930  infleinflem1  43851  infxrlbrnmpt2  43891  infleinf2  43895  infxrlesupxr  43917  inficc  44018  ressiooinf  44041  liminfgord  44241  cnrefiisplem  44316  ioorrnopnlem  44791  ovnlecvr  45045  ovn0lem  45052  ovnhoilem1  45088  ovnlecvr2  45097
  Copyright terms: Public domain W3C validator