Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrlenltd | Structured version Visualization version GIF version |
Description: "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
xrlenltd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrlenltd.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
xrlenltd | ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrlenltd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | xrlenltd.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
3 | xrlenlt 11024 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∈ wcel 2109 class class class wbr 5078 ℝ*cxr 10992 < clt 10993 ≤ cle 10994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-cnv 5596 df-le 10999 |
This theorem is referenced by: xrnltled 11027 supxrleub 13042 infxrgelb 13051 ixxub 13082 ixxlb 13083 icodisj 13190 supicclub2 13218 bldisj 23532 icombl 24709 ioorcl2 24717 ply1divmo 25281 ig1peu 25317 psercnlem1 25565 infxrge0gelb 31068 supxrgere 42826 supxrgelem 42830 lenelioc 43028 iccdificc 43031 limsupub 43199 fge0iccico 43862 sge0sn 43871 sge0rpcpnf 43913 pimltmnf2 44189 pimconstlt0 44192 pimgtpnf2 44195 pimdecfgtioo 44205 pimincfltioo 44206 |
Copyright terms: Public domain | W3C validator |