Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrlenltd | Structured version Visualization version GIF version |
Description: "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
xrlenltd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrlenltd.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
xrlenltd | ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrlenltd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | xrlenltd.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
3 | xrlenlt 11086 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
4 | 1, 2, 3 | syl2anc 585 | 1 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∈ wcel 2104 class class class wbr 5081 ℝ*cxr 11054 < clt 11055 ≤ cle 11056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-xp 5606 df-cnv 5608 df-le 11061 |
This theorem is referenced by: xrnltled 11089 supxrleub 13106 infxrgelb 13115 ixxub 13146 ixxlb 13147 icodisj 13254 supicclub2 13282 bldisj 23596 icombl 24773 ioorcl2 24781 ply1divmo 25345 ig1peu 25381 psercnlem1 25629 infxrge0gelb 31134 supxrgere 42920 supxrgelem 42924 lenelioc 43123 iccdificc 43126 limsupub 43294 fge0iccico 43958 sge0sn 43967 sge0rpcpnf 44009 pimltmnf2f 44285 pimconstlt0 44289 pimgtpnf2f 44293 pimdecfgtioo 44305 pimincfltioo 44306 |
Copyright terms: Public domain | W3C validator |