| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrlenltd | Structured version Visualization version GIF version | ||
| Description: "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| xrlenltd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrlenltd.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| xrlenltd | ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlenltd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | xrlenltd.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 3 | xrlenlt 11188 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2113 class class class wbr 5095 ℝ*cxr 11156 < clt 11157 ≤ cle 11158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-cnv 5629 df-le 11163 |
| This theorem is referenced by: xrnltled 11192 supxrleub 13232 infxrgelb 13242 ixxub 13273 ixxlb 13274 icodisj 13383 supicclub2 13411 bldisj 24333 icombl 25512 ioorcl2 25520 ply1divmo 26088 ig1peu 26127 psercnlem1 26382 infxrge0gelb 32774 supxrgere 45494 supxrgelem 45498 lenelioc 45698 iccdificc 45701 limsupub 45864 fge0iccico 46530 sge0sn 46539 sge0rpcpnf 46581 pimltmnf2f 46857 pimconstlt0 46861 pimgtpnf2f 46865 pimdecfgtioo 46877 pimincfltioo 46878 |
| Copyright terms: Public domain | W3C validator |