MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlenltd Structured version   Visualization version   GIF version

Theorem xrlenltd 11325
Description: "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
xrlenltd.a (𝜑𝐴 ∈ ℝ*)
xrlenltd.b (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
xrlenltd (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))

Proof of Theorem xrlenltd
StepHypRef Expression
1 xrlenltd.a . 2 (𝜑𝐴 ∈ ℝ*)
2 xrlenltd.b . 2 (𝜑𝐵 ∈ ℝ*)
3 xrlenlt 11324 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wcel 2106   class class class wbr 5148  *cxr 11292   < clt 11293  cle 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-cnv 5697  df-le 11299
This theorem is referenced by:  xrnltled  11327  supxrleub  13365  infxrgelb  13374  ixxub  13405  ixxlb  13406  icodisj  13513  supicclub2  13541  bldisj  24424  icombl  25613  ioorcl2  25621  ply1divmo  26190  ig1peu  26229  psercnlem1  26484  infxrge0gelb  32777  supxrgere  45283  supxrgelem  45287  lenelioc  45489  iccdificc  45492  limsupub  45660  fge0iccico  46326  sge0sn  46335  sge0rpcpnf  46377  pimltmnf2f  46653  pimconstlt0  46657  pimgtpnf2f  46661  pimdecfgtioo  46673  pimincfltioo  46674
  Copyright terms: Public domain W3C validator