MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlenltd Structured version   Visualization version   GIF version

Theorem xrlenltd 11301
Description: "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
xrlenltd.a (𝜑𝐴 ∈ ℝ*)
xrlenltd.b (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
xrlenltd (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))

Proof of Theorem xrlenltd
StepHypRef Expression
1 xrlenltd.a . 2 (𝜑𝐴 ∈ ℝ*)
2 xrlenltd.b . 2 (𝜑𝐵 ∈ ℝ*)
3 xrlenlt 11300 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wcel 2108   class class class wbr 5119  *cxr 11268   < clt 11269  cle 11270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-cnv 5662  df-le 11275
This theorem is referenced by:  xrnltled  11303  supxrleub  13342  infxrgelb  13352  ixxub  13383  ixxlb  13384  icodisj  13493  supicclub2  13521  bldisj  24337  icombl  25517  ioorcl2  25525  ply1divmo  26093  ig1peu  26132  psercnlem1  26387  infxrge0gelb  32743  supxrgere  45360  supxrgelem  45364  lenelioc  45565  iccdificc  45568  limsupub  45733  fge0iccico  46399  sge0sn  46408  sge0rpcpnf  46450  pimltmnf2f  46726  pimconstlt0  46730  pimgtpnf2f  46734  pimdecfgtioo  46746  pimincfltioo  46747
  Copyright terms: Public domain W3C validator