| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrlenltd | Structured version Visualization version GIF version | ||
| Description: "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| xrlenltd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrlenltd.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| xrlenltd | ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlenltd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | xrlenltd.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 3 | xrlenlt 11246 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2109 class class class wbr 5110 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-le 11221 |
| This theorem is referenced by: xrnltled 11249 supxrleub 13293 infxrgelb 13303 ixxub 13334 ixxlb 13335 icodisj 13444 supicclub2 13472 bldisj 24293 icombl 25472 ioorcl2 25480 ply1divmo 26048 ig1peu 26087 psercnlem1 26342 infxrge0gelb 32696 supxrgere 45336 supxrgelem 45340 lenelioc 45541 iccdificc 45544 limsupub 45709 fge0iccico 46375 sge0sn 46384 sge0rpcpnf 46426 pimltmnf2f 46702 pimconstlt0 46706 pimgtpnf2f 46710 pimdecfgtioo 46722 pimincfltioo 46723 |
| Copyright terms: Public domain | W3C validator |