![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrlenltd | Structured version Visualization version GIF version |
Description: "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
xrlenltd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrlenltd.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
xrlenltd | ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrlenltd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | xrlenltd.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
3 | xrlenlt 11324 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2106 class class class wbr 5148 ℝ*cxr 11292 < clt 11293 ≤ cle 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-cnv 5697 df-le 11299 |
This theorem is referenced by: xrnltled 11327 supxrleub 13365 infxrgelb 13374 ixxub 13405 ixxlb 13406 icodisj 13513 supicclub2 13541 bldisj 24424 icombl 25613 ioorcl2 25621 ply1divmo 26190 ig1peu 26229 psercnlem1 26484 infxrge0gelb 32777 supxrgere 45283 supxrgelem 45287 lenelioc 45489 iccdificc 45492 limsupub 45660 fge0iccico 46326 sge0sn 46335 sge0rpcpnf 46377 pimltmnf2f 46653 pimconstlt0 46657 pimgtpnf2f 46661 pimdecfgtioo 46673 pimincfltioo 46674 |
Copyright terms: Public domain | W3C validator |