MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlenltd Structured version   Visualization version   GIF version

Theorem xrlenltd 11087
Description: "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
xrlenltd.a (𝜑𝐴 ∈ ℝ*)
xrlenltd.b (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
xrlenltd (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))

Proof of Theorem xrlenltd
StepHypRef Expression
1 xrlenltd.a . 2 (𝜑𝐴 ∈ ℝ*)
2 xrlenltd.b . 2 (𝜑𝐵 ∈ ℝ*)
3 xrlenlt 11086 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
41, 2, 3syl2anc 585 1 (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wcel 2104   class class class wbr 5081  *cxr 11054   < clt 11055  cle 11056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-xp 5606  df-cnv 5608  df-le 11061
This theorem is referenced by:  xrnltled  11089  supxrleub  13106  infxrgelb  13115  ixxub  13146  ixxlb  13147  icodisj  13254  supicclub2  13282  bldisj  23596  icombl  24773  ioorcl2  24781  ply1divmo  25345  ig1peu  25381  psercnlem1  25629  infxrge0gelb  31134  supxrgere  42920  supxrgelem  42924  lenelioc  43123  iccdificc  43126  limsupub  43294  fge0iccico  43958  sge0sn  43967  sge0rpcpnf  44009  pimltmnf2f  44285  pimconstlt0  44289  pimgtpnf2f  44293  pimdecfgtioo  44305  pimincfltioo  44306
  Copyright terms: Public domain W3C validator