MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlenltd Structured version   Visualization version   GIF version

Theorem xrlenltd 11240
Description: "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
xrlenltd.a (𝜑𝐴 ∈ ℝ*)
xrlenltd.b (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
xrlenltd (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))

Proof of Theorem xrlenltd
StepHypRef Expression
1 xrlenltd.a . 2 (𝜑𝐴 ∈ ℝ*)
2 xrlenltd.b . 2 (𝜑𝐵 ∈ ℝ*)
3 xrlenlt 11239 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wcel 2109   class class class wbr 5107  *cxr 11207   < clt 11208  cle 11209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-le 11214
This theorem is referenced by:  xrnltled  11242  supxrleub  13286  infxrgelb  13296  ixxub  13327  ixxlb  13328  icodisj  13437  supicclub2  13465  bldisj  24286  icombl  25465  ioorcl2  25473  ply1divmo  26041  ig1peu  26080  psercnlem1  26335  infxrge0gelb  32689  supxrgere  45329  supxrgelem  45333  lenelioc  45534  iccdificc  45537  limsupub  45702  fge0iccico  46368  sge0sn  46377  sge0rpcpnf  46419  pimltmnf2f  46695  pimconstlt0  46699  pimgtpnf2f  46703  pimdecfgtioo  46715  pimincfltioo  46716
  Copyright terms: Public domain W3C validator