Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0infssd Structured version   Visualization version   GIF version

Theorem xrge0infssd 30469
 Description: Inequality deduction for infimum of a nonnegative extended real subset. (Contributed by Thierry Arnoux, 16-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Hypotheses
Ref Expression
xrge0infssd.1 (𝜑𝐶𝐵)
xrge0infssd.2 (𝜑𝐵 ⊆ (0[,]+∞))
Assertion
Ref Expression
xrge0infssd (𝜑 → inf(𝐵, (0[,]+∞), < ) ≤ inf(𝐶, (0[,]+∞), < ))

Proof of Theorem xrge0infssd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccssxr 12797 . . 3 (0[,]+∞) ⊆ ℝ*
2 xrltso 12511 . . . . . 6 < Or ℝ*
3 soss 5467 . . . . . 6 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
41, 2, 3mp2 9 . . . . 5 < Or (0[,]+∞)
54a1i 11 . . . 4 (𝜑 → < Or (0[,]+∞))
6 xrge0infssd.2 . . . . 5 (𝜑𝐵 ⊆ (0[,]+∞))
7 xrge0infss 30468 . . . . 5 (𝐵 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐵 𝑧 < 𝑦)))
86, 7syl 17 . . . 4 (𝜑 → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐵 𝑧 < 𝑦)))
95, 8infcl 8928 . . 3 (𝜑 → inf(𝐵, (0[,]+∞), < ) ∈ (0[,]+∞))
101, 9sseldi 3941 . 2 (𝜑 → inf(𝐵, (0[,]+∞), < ) ∈ ℝ*)
11 xrge0infssd.1 . . . . . 6 (𝜑𝐶𝐵)
1211, 6sstrd 3953 . . . . 5 (𝜑𝐶 ⊆ (0[,]+∞))
13 xrge0infss 30468 . . . . 5 (𝐶 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐶 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐶 𝑧 < 𝑦)))
1412, 13syl 17 . . . 4 (𝜑 → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐶 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐶 𝑧 < 𝑦)))
155, 14infcl 8928 . . 3 (𝜑 → inf(𝐶, (0[,]+∞), < ) ∈ (0[,]+∞))
161, 15sseldi 3941 . 2 (𝜑 → inf(𝐶, (0[,]+∞), < ) ∈ ℝ*)
175, 11, 14, 8infssd 30430 . 2 (𝜑 → ¬ inf(𝐶, (0[,]+∞), < ) < inf(𝐵, (0[,]+∞), < ))
1810, 16, 17xrnltled 10685 1 (𝜑 → inf(𝐵, (0[,]+∞), < ) ≤ inf(𝐶, (0[,]+∞), < ))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 398  ∀wral 3125  ∃wrex 3126   ⊆ wss 3912   class class class wbr 5040   Or wor 5447  (class class class)co 7131  infcinf 8881  0cc0 10513  +∞cpnf 10648  ℝ*cxr 10650   < clt 10651   ≤ cle 10652  [,]cicc 12718 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5177  ax-nul 5184  ax-pow 5240  ax-pr 5304  ax-un 7437  ax-cnex 10569  ax-resscn 10570  ax-1cn 10571  ax-icn 10572  ax-addcl 10573  ax-addrcl 10574  ax-mulcl 10575  ax-mulrcl 10576  ax-mulcom 10577  ax-addass 10578  ax-mulass 10579  ax-distr 10580  ax-i2m1 10581  ax-1ne0 10582  ax-1rid 10583  ax-rnegex 10584  ax-rrecex 10585  ax-cnre 10586  ax-pre-lttri 10587  ax-pre-lttrn 10588  ax-pre-ltadd 10589  ax-pre-mulgt0 10590  ax-pre-sup 10591 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3752  df-csb 3860  df-dif 3915  df-un 3917  df-in 3919  df-ss 3928  df-nul 4268  df-if 4442  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4813  df-iun 4895  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5434  df-po 5448  df-so 5449  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-riota 7089  df-ov 7134  df-oprab 7135  df-mpo 7136  df-1st 7665  df-2nd 7666  df-er 8265  df-en 8486  df-dom 8487  df-sdom 8488  df-sup 8882  df-inf 8883  df-pnf 10653  df-mnf 10654  df-xr 10655  df-ltxr 10656  df-le 10657  df-sub 10848  df-neg 10849  df-icc 12722 This theorem is referenced by:  omsmon  31561
 Copyright terms: Public domain W3C validator