| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0infssd | Structured version Visualization version GIF version | ||
| Description: Inequality deduction for infimum of a nonnegative extended real subset. (Contributed by Thierry Arnoux, 16-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
| Ref | Expression |
|---|---|
| xrge0infssd.1 | ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
| xrge0infssd.2 | ⊢ (𝜑 → 𝐵 ⊆ (0[,]+∞)) |
| Ref | Expression |
|---|---|
| xrge0infssd | ⊢ (𝜑 → inf(𝐵, (0[,]+∞), < ) ≤ inf(𝐶, (0[,]+∞), < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssxr 13367 | . . 3 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 2 | xrltso 13077 | . . . . . 6 ⊢ < Or ℝ* | |
| 3 | soss 5559 | . . . . . 6 ⊢ ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞))) | |
| 4 | 1, 2, 3 | mp2 9 | . . . . 5 ⊢ < Or (0[,]+∞) |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → < Or (0[,]+∞)) |
| 6 | xrge0infssd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ (0[,]+∞)) | |
| 7 | xrge0infss 32656 | . . . . 5 ⊢ (𝐵 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐵 𝑧 < 𝑦))) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐵 𝑧 < 𝑦))) |
| 9 | 5, 8 | infcl 9416 | . . 3 ⊢ (𝜑 → inf(𝐵, (0[,]+∞), < ) ∈ (0[,]+∞)) |
| 10 | 1, 9 | sselid 3941 | . 2 ⊢ (𝜑 → inf(𝐵, (0[,]+∞), < ) ∈ ℝ*) |
| 11 | xrge0infssd.1 | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) | |
| 12 | 11, 6 | sstrd 3954 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ (0[,]+∞)) |
| 13 | xrge0infss 32656 | . . . . 5 ⊢ (𝐶 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐶 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐶 𝑧 < 𝑦))) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐶 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐶 𝑧 < 𝑦))) |
| 15 | 5, 14 | infcl 9416 | . . 3 ⊢ (𝜑 → inf(𝐶, (0[,]+∞), < ) ∈ (0[,]+∞)) |
| 16 | 1, 15 | sselid 3941 | . 2 ⊢ (𝜑 → inf(𝐶, (0[,]+∞), < ) ∈ ℝ*) |
| 17 | 5, 11, 14, 8 | infssd 9421 | . 2 ⊢ (𝜑 → ¬ inf(𝐶, (0[,]+∞), < ) < inf(𝐵, (0[,]+∞), < )) |
| 18 | 10, 16, 17 | xrnltled 11218 | 1 ⊢ (𝜑 → inf(𝐵, (0[,]+∞), < ) ≤ inf(𝐶, (0[,]+∞), < )) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wral 3044 ∃wrex 3053 ⊆ wss 3911 class class class wbr 5102 Or wor 5538 (class class class)co 7369 infcinf 9368 0cc0 11044 +∞cpnf 11181 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 [,]cicc 13285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-icc 13289 |
| This theorem is referenced by: omsmon 34262 |
| Copyright terms: Public domain | W3C validator |