Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0infssd Structured version   Visualization version   GIF version

Theorem xrge0infssd 32684
Description: Inequality deduction for infimum of a nonnegative extended real subset. (Contributed by Thierry Arnoux, 16-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Hypotheses
Ref Expression
xrge0infssd.1 (𝜑𝐶𝐵)
xrge0infssd.2 (𝜑𝐵 ⊆ (0[,]+∞))
Assertion
Ref Expression
xrge0infssd (𝜑 → inf(𝐵, (0[,]+∞), < ) ≤ inf(𝐶, (0[,]+∞), < ))

Proof of Theorem xrge0infssd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccssxr 13391 . . 3 (0[,]+∞) ⊆ ℝ*
2 xrltso 13101 . . . . . 6 < Or ℝ*
3 soss 5566 . . . . . 6 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
41, 2, 3mp2 9 . . . . 5 < Or (0[,]+∞)
54a1i 11 . . . 4 (𝜑 → < Or (0[,]+∞))
6 xrge0infssd.2 . . . . 5 (𝜑𝐵 ⊆ (0[,]+∞))
7 xrge0infss 32683 . . . . 5 (𝐵 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐵 𝑧 < 𝑦)))
86, 7syl 17 . . . 4 (𝜑 → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐵 𝑧 < 𝑦)))
95, 8infcl 9440 . . 3 (𝜑 → inf(𝐵, (0[,]+∞), < ) ∈ (0[,]+∞))
101, 9sselid 3944 . 2 (𝜑 → inf(𝐵, (0[,]+∞), < ) ∈ ℝ*)
11 xrge0infssd.1 . . . . . 6 (𝜑𝐶𝐵)
1211, 6sstrd 3957 . . . . 5 (𝜑𝐶 ⊆ (0[,]+∞))
13 xrge0infss 32683 . . . . 5 (𝐶 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐶 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐶 𝑧 < 𝑦)))
1412, 13syl 17 . . . 4 (𝜑 → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐶 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐶 𝑧 < 𝑦)))
155, 14infcl 9440 . . 3 (𝜑 → inf(𝐶, (0[,]+∞), < ) ∈ (0[,]+∞))
161, 15sselid 3944 . 2 (𝜑 → inf(𝐶, (0[,]+∞), < ) ∈ ℝ*)
175, 11, 14, 8infssd 9445 . 2 (𝜑 → ¬ inf(𝐶, (0[,]+∞), < ) < inf(𝐵, (0[,]+∞), < ))
1810, 16, 17xrnltled 11242 1 (𝜑 → inf(𝐵, (0[,]+∞), < ) ≤ inf(𝐶, (0[,]+∞), < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wral 3044  wrex 3053  wss 3914   class class class wbr 5107   Or wor 5545  (class class class)co 7387  infcinf 9392  0cc0 11068  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  [,]cicc 13309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-icc 13313
This theorem is referenced by:  omsmon  34289
  Copyright terms: Public domain W3C validator