![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0infssd | Structured version Visualization version GIF version |
Description: Inequality deduction for infimum of a nonnegative extended real subset. (Contributed by Thierry Arnoux, 16-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
Ref | Expression |
---|---|
xrge0infssd.1 | ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
xrge0infssd.2 | ⊢ (𝜑 → 𝐵 ⊆ (0[,]+∞)) |
Ref | Expression |
---|---|
xrge0infssd | ⊢ (𝜑 → inf(𝐵, (0[,]+∞), < ) ≤ inf(𝐶, (0[,]+∞), < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 13425 | . . 3 ⊢ (0[,]+∞) ⊆ ℝ* | |
2 | xrltso 13138 | . . . . . 6 ⊢ < Or ℝ* | |
3 | soss 5604 | . . . . . 6 ⊢ ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞))) | |
4 | 1, 2, 3 | mp2 9 | . . . . 5 ⊢ < Or (0[,]+∞) |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → < Or (0[,]+∞)) |
6 | xrge0infssd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ (0[,]+∞)) | |
7 | xrge0infss 32501 | . . . . 5 ⊢ (𝐵 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐵 𝑧 < 𝑦))) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐵 𝑧 < 𝑦))) |
9 | 5, 8 | infcl 9497 | . . 3 ⊢ (𝜑 → inf(𝐵, (0[,]+∞), < ) ∈ (0[,]+∞)) |
10 | 1, 9 | sselid 3976 | . 2 ⊢ (𝜑 → inf(𝐵, (0[,]+∞), < ) ∈ ℝ*) |
11 | xrge0infssd.1 | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) | |
12 | 11, 6 | sstrd 3988 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ (0[,]+∞)) |
13 | xrge0infss 32501 | . . . . 5 ⊢ (𝐶 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐶 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐶 𝑧 < 𝑦))) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐶 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐶 𝑧 < 𝑦))) |
15 | 5, 14 | infcl 9497 | . . 3 ⊢ (𝜑 → inf(𝐶, (0[,]+∞), < ) ∈ (0[,]+∞)) |
16 | 1, 15 | sselid 3976 | . 2 ⊢ (𝜑 → inf(𝐶, (0[,]+∞), < ) ∈ ℝ*) |
17 | 5, 11, 14, 8 | infssd 32463 | . 2 ⊢ (𝜑 → ¬ inf(𝐶, (0[,]+∞), < ) < inf(𝐵, (0[,]+∞), < )) |
18 | 10, 16, 17 | xrnltled 11298 | 1 ⊢ (𝜑 → inf(𝐵, (0[,]+∞), < ) ≤ inf(𝐶, (0[,]+∞), < )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wral 3056 ∃wrex 3065 ⊆ wss 3944 class class class wbr 5142 Or wor 5583 (class class class)co 7414 infcinf 9450 0cc0 11124 +∞cpnf 11261 ℝ*cxr 11263 < clt 11264 ≤ cle 11265 [,]cicc 13345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7985 df-2nd 7986 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-sup 9451 df-inf 9452 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-icc 13349 |
This theorem is referenced by: omsmon 33841 |
Copyright terms: Public domain | W3C validator |