![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0infssd | Structured version Visualization version GIF version |
Description: Inequality deduction for infimum of a nonnegative extended real subset. (Contributed by Thierry Arnoux, 16-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
Ref | Expression |
---|---|
xrge0infssd.1 | ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
xrge0infssd.2 | ⊢ (𝜑 → 𝐵 ⊆ (0[,]+∞)) |
Ref | Expression |
---|---|
xrge0infssd | ⊢ (𝜑 → inf(𝐵, (0[,]+∞), < ) ≤ inf(𝐶, (0[,]+∞), < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 13406 | . . 3 ⊢ (0[,]+∞) ⊆ ℝ* | |
2 | xrltso 13119 | . . . . . 6 ⊢ < Or ℝ* | |
3 | soss 5608 | . . . . . 6 ⊢ ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞))) | |
4 | 1, 2, 3 | mp2 9 | . . . . 5 ⊢ < Or (0[,]+∞) |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → < Or (0[,]+∞)) |
6 | xrge0infssd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ (0[,]+∞)) | |
7 | xrge0infss 31968 | . . . . 5 ⊢ (𝐵 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐵 𝑧 < 𝑦))) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐵 𝑧 < 𝑦))) |
9 | 5, 8 | infcl 9482 | . . 3 ⊢ (𝜑 → inf(𝐵, (0[,]+∞), < ) ∈ (0[,]+∞)) |
10 | 1, 9 | sselid 3980 | . 2 ⊢ (𝜑 → inf(𝐵, (0[,]+∞), < ) ∈ ℝ*) |
11 | xrge0infssd.1 | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) | |
12 | 11, 6 | sstrd 3992 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ (0[,]+∞)) |
13 | xrge0infss 31968 | . . . . 5 ⊢ (𝐶 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐶 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐶 𝑧 < 𝑦))) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐶 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐶 𝑧 < 𝑦))) |
15 | 5, 14 | infcl 9482 | . . 3 ⊢ (𝜑 → inf(𝐶, (0[,]+∞), < ) ∈ (0[,]+∞)) |
16 | 1, 15 | sselid 3980 | . 2 ⊢ (𝜑 → inf(𝐶, (0[,]+∞), < ) ∈ ℝ*) |
17 | 5, 11, 14, 8 | infssd 31930 | . 2 ⊢ (𝜑 → ¬ inf(𝐶, (0[,]+∞), < ) < inf(𝐵, (0[,]+∞), < )) |
18 | 10, 16, 17 | xrnltled 11281 | 1 ⊢ (𝜑 → inf(𝐵, (0[,]+∞), < ) ≤ inf(𝐶, (0[,]+∞), < )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∀wral 3061 ∃wrex 3070 ⊆ wss 3948 class class class wbr 5148 Or wor 5587 (class class class)co 7408 infcinf 9435 0cc0 11109 +∞cpnf 11244 ℝ*cxr 11246 < clt 11247 ≤ cle 11248 [,]cicc 13326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-icc 13330 |
This theorem is referenced by: omsmon 33292 |
Copyright terms: Public domain | W3C validator |