Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0infssd Structured version   Visualization version   GIF version

Theorem xrge0infssd 32704
Description: Inequality deduction for infimum of a nonnegative extended real subset. (Contributed by Thierry Arnoux, 16-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Hypotheses
Ref Expression
xrge0infssd.1 (𝜑𝐶𝐵)
xrge0infssd.2 (𝜑𝐵 ⊆ (0[,]+∞))
Assertion
Ref Expression
xrge0infssd (𝜑 → inf(𝐵, (0[,]+∞), < ) ≤ inf(𝐶, (0[,]+∞), < ))

Proof of Theorem xrge0infssd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccssxr 13333 . . 3 (0[,]+∞) ⊆ ℝ*
2 xrltso 13043 . . . . . 6 < Or ℝ*
3 soss 5547 . . . . . 6 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
41, 2, 3mp2 9 . . . . 5 < Or (0[,]+∞)
54a1i 11 . . . 4 (𝜑 → < Or (0[,]+∞))
6 xrge0infssd.2 . . . . 5 (𝜑𝐵 ⊆ (0[,]+∞))
7 xrge0infss 32703 . . . . 5 (𝐵 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐵 𝑧 < 𝑦)))
86, 7syl 17 . . . 4 (𝜑 → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐵 𝑧 < 𝑦)))
95, 8infcl 9379 . . 3 (𝜑 → inf(𝐵, (0[,]+∞), < ) ∈ (0[,]+∞))
101, 9sselid 3933 . 2 (𝜑 → inf(𝐵, (0[,]+∞), < ) ∈ ℝ*)
11 xrge0infssd.1 . . . . . 6 (𝜑𝐶𝐵)
1211, 6sstrd 3946 . . . . 5 (𝜑𝐶 ⊆ (0[,]+∞))
13 xrge0infss 32703 . . . . 5 (𝐶 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐶 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐶 𝑧 < 𝑦)))
1412, 13syl 17 . . . 4 (𝜑 → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐶 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐶 𝑧 < 𝑦)))
155, 14infcl 9379 . . 3 (𝜑 → inf(𝐶, (0[,]+∞), < ) ∈ (0[,]+∞))
161, 15sselid 3933 . 2 (𝜑 → inf(𝐶, (0[,]+∞), < ) ∈ ℝ*)
175, 11, 14, 8infssd 9384 . 2 (𝜑 → ¬ inf(𝐶, (0[,]+∞), < ) < inf(𝐵, (0[,]+∞), < ))
1810, 16, 17xrnltled 11184 1 (𝜑 → inf(𝐵, (0[,]+∞), < ) ≤ inf(𝐶, (0[,]+∞), < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wral 3044  wrex 3053  wss 3903   class class class wbr 5092   Or wor 5526  (class class class)co 7349  infcinf 9331  0cc0 11009  +∞cpnf 11146  *cxr 11148   < clt 11149  cle 11150  [,]cicc 13251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-icc 13255
This theorem is referenced by:  omsmon  34266
  Copyright terms: Public domain W3C validator