MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxlb Structured version   Visualization version   GIF version

Theorem ixxlb 12763
Description: Extract the lower bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
ixxub.2 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 < 𝐵𝑤𝑆𝐵))
ixxub.3 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝐵))
ixxub.4 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑅𝑤))
ixxub.5 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑅𝑤𝐴𝑤))
Assertion
Ref Expression
ixxlb ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → inf((𝐴𝑂𝐵), ℝ*, < ) = 𝐴)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑂   𝑤,𝐵,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑤)   𝑆(𝑤)   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem ixxlb
StepHypRef Expression
1 ixx.1 . . . . . . . . 9 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
21elixx1 12750 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
323adant3 1128 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
43biimpa 479 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵))
54simp1d 1138 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤 ∈ ℝ*)
65ex 415 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝑤 ∈ (𝐴𝑂𝐵) → 𝑤 ∈ ℝ*))
76ssrdv 3975 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝐴𝑂𝐵) ⊆ ℝ*)
8 infxrcl 12729 . . 3 ((𝐴𝑂𝐵) ⊆ ℝ* → inf((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*)
97, 8syl 17 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → inf((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*)
10 simp1 1132 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → 𝐴 ∈ ℝ*)
11 simprr 771 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))
127ad2antrr 724 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → (𝐴𝑂𝐵) ⊆ ℝ*)
13 qre 12356 . . . . . . . . . . 11 (𝑤 ∈ ℚ → 𝑤 ∈ ℝ)
1413rexrd 10693 . . . . . . . . . 10 (𝑤 ∈ ℚ → 𝑤 ∈ ℝ*)
1514ad2antlr 725 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝑤 ∈ ℝ*)
16 simprl 769 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝐴 < 𝑤)
1710ad2antrr 724 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝐴 ∈ ℝ*)
18 ixxub.4 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑅𝑤))
1917, 15, 18syl2anc 586 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → (𝐴 < 𝑤𝐴𝑅𝑤))
2016, 19mpd 15 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝐴𝑅𝑤)
219ad2antrr 724 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → inf((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*)
22 simpll2 1209 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝐵 ∈ ℝ*)
23 simp3 1134 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝐴𝑂𝐵) ≠ ∅)
24 n0 4312 . . . . . . . . . . . . . 14 ((𝐴𝑂𝐵) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝐴𝑂𝐵))
2523, 24sylib 220 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → ∃𝑤 𝑤 ∈ (𝐴𝑂𝐵))
269adantr 483 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → inf((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*)
27 simpl2 1188 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐵 ∈ ℝ*)
28 infxrlb 12730 . . . . . . . . . . . . . . 15 (((𝐴𝑂𝐵) ⊆ ℝ*𝑤 ∈ (𝐴𝑂𝐵)) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝑤)
297, 28sylan 582 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝑤)
304simp3d 1140 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤𝑆𝐵)
31 ixxub.3 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝐵))
325, 27, 31syl2anc 586 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝑤𝑆𝐵𝑤𝐵))
3330, 32mpd 15 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤𝐵)
3426, 5, 27, 29, 33xrletrd 12558 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝐵)
3525, 34exlimddv 1936 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝐵)
3635ad2antrr 724 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝐵)
3715, 21, 22, 11, 36xrltletrd 12557 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝑤 < 𝐵)
38 ixxub.2 . . . . . . . . . . 11 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 < 𝐵𝑤𝑆𝐵))
3915, 22, 38syl2anc 586 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → (𝑤 < 𝐵𝑤𝑆𝐵))
4037, 39mpd 15 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝑤𝑆𝐵)
413ad2antrr 724 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
4215, 20, 40, 41mpbir3and 1338 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝑤 ∈ (𝐴𝑂𝐵))
4312, 42, 28syl2anc 586 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝑤)
4421, 15xrlenltd 10709 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → (inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝑤 ↔ ¬ 𝑤 < inf((𝐴𝑂𝐵), ℝ*, < )))
4543, 44mpbid 234 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → ¬ 𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))
4611, 45pm2.65da 815 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) → ¬ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < )))
4746nrexdv 3272 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → ¬ ∃𝑤 ∈ ℚ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < )))
48 qbtwnxr 12596 . . . . . 6 ((𝐴 ∈ ℝ* ∧ inf((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*𝐴 < inf((𝐴𝑂𝐵), ℝ*, < )) → ∃𝑤 ∈ ℚ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < )))
49483expia 1117 . . . . 5 ((𝐴 ∈ ℝ* ∧ inf((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*) → (𝐴 < inf((𝐴𝑂𝐵), ℝ*, < ) → ∃𝑤 ∈ ℚ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))))
5010, 9, 49syl2anc 586 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝐴 < inf((𝐴𝑂𝐵), ℝ*, < ) → ∃𝑤 ∈ ℚ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))))
5147, 50mtod 200 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → ¬ 𝐴 < inf((𝐴𝑂𝐵), ℝ*, < ))
529, 10, 51xrnltled 10711 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝐴)
534simp2d 1139 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐴𝑅𝑤)
5410adantr 483 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐴 ∈ ℝ*)
55 ixxub.5 . . . . . 6 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑅𝑤𝐴𝑤))
5654, 5, 55syl2anc 586 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝐴𝑅𝑤𝐴𝑤))
5753, 56mpd 15 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐴𝑤)
5857ralrimiva 3184 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → ∀𝑤 ∈ (𝐴𝑂𝐵)𝐴𝑤)
59 infxrgelb 12731 . . . 4 (((𝐴𝑂𝐵) ⊆ ℝ*𝐴 ∈ ℝ*) → (𝐴 ≤ inf((𝐴𝑂𝐵), ℝ*, < ) ↔ ∀𝑤 ∈ (𝐴𝑂𝐵)𝐴𝑤))
607, 10, 59syl2anc 586 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝐴 ≤ inf((𝐴𝑂𝐵), ℝ*, < ) ↔ ∀𝑤 ∈ (𝐴𝑂𝐵)𝐴𝑤))
6158, 60mpbird 259 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → 𝐴 ≤ inf((𝐴𝑂𝐵), ℝ*, < ))
629, 10, 52, 61xrletrid 12551 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → inf((𝐴𝑂𝐵), ℝ*, < ) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wne 3018  wral 3140  wrex 3141  {crab 3144  wss 3938  c0 4293   class class class wbr 5068  (class class class)co 7158  cmpo 7160  infcinf 8907  *cxr 10676   < clt 10677  cle 10678  cq 12351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352
This theorem is referenced by:  ioorf  24176  ioorinv2  24178  ioossioobi  41800
  Copyright terms: Public domain W3C validator