MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxlb Structured version   Visualization version   GIF version

Theorem ixxlb 13194
Description: Extract the lower bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
ixxub.2 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 < 𝐵𝑤𝑆𝐵))
ixxub.3 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝐵))
ixxub.4 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑅𝑤))
ixxub.5 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑅𝑤𝐴𝑤))
Assertion
Ref Expression
ixxlb ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → inf((𝐴𝑂𝐵), ℝ*, < ) = 𝐴)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑂   𝑤,𝐵,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑤)   𝑆(𝑤)   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem ixxlb
StepHypRef Expression
1 ixx.1 . . . . . . . . 9 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
21elixx1 13181 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
323adant3 1131 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
43biimpa 477 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵))
54simp1d 1141 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤 ∈ ℝ*)
65ex 413 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝑤 ∈ (𝐴𝑂𝐵) → 𝑤 ∈ ℝ*))
76ssrdv 3937 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝐴𝑂𝐵) ⊆ ℝ*)
8 infxrcl 13160 . . 3 ((𝐴𝑂𝐵) ⊆ ℝ* → inf((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*)
97, 8syl 17 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → inf((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*)
10 simp1 1135 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → 𝐴 ∈ ℝ*)
11 simprr 770 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))
127ad2antrr 723 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → (𝐴𝑂𝐵) ⊆ ℝ*)
13 qre 12786 . . . . . . . . . . 11 (𝑤 ∈ ℚ → 𝑤 ∈ ℝ)
1413rexrd 11118 . . . . . . . . . 10 (𝑤 ∈ ℚ → 𝑤 ∈ ℝ*)
1514ad2antlr 724 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝑤 ∈ ℝ*)
16 simprl 768 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝐴 < 𝑤)
1710ad2antrr 723 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝐴 ∈ ℝ*)
18 ixxub.4 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑅𝑤))
1917, 15, 18syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → (𝐴 < 𝑤𝐴𝑅𝑤))
2016, 19mpd 15 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝐴𝑅𝑤)
219ad2antrr 723 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → inf((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*)
22 simpll2 1212 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝐵 ∈ ℝ*)
23 simp3 1137 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝐴𝑂𝐵) ≠ ∅)
24 n0 4292 . . . . . . . . . . . . . 14 ((𝐴𝑂𝐵) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝐴𝑂𝐵))
2523, 24sylib 217 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → ∃𝑤 𝑤 ∈ (𝐴𝑂𝐵))
269adantr 481 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → inf((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*)
27 simpl2 1191 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐵 ∈ ℝ*)
28 infxrlb 13161 . . . . . . . . . . . . . . 15 (((𝐴𝑂𝐵) ⊆ ℝ*𝑤 ∈ (𝐴𝑂𝐵)) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝑤)
297, 28sylan 580 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝑤)
304simp3d 1143 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤𝑆𝐵)
31 ixxub.3 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝐵))
325, 27, 31syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝑤𝑆𝐵𝑤𝐵))
3330, 32mpd 15 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤𝐵)
3426, 5, 27, 29, 33xrletrd 12989 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝐵)
3525, 34exlimddv 1937 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝐵)
3635ad2antrr 723 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝐵)
3715, 21, 22, 11, 36xrltletrd 12988 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝑤 < 𝐵)
38 ixxub.2 . . . . . . . . . . 11 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 < 𝐵𝑤𝑆𝐵))
3915, 22, 38syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → (𝑤 < 𝐵𝑤𝑆𝐵))
4037, 39mpd 15 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝑤𝑆𝐵)
413ad2antrr 723 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
4215, 20, 40, 41mpbir3and 1341 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝑤 ∈ (𝐴𝑂𝐵))
4312, 42, 28syl2anc 584 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝑤)
4421, 15xrlenltd 11134 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → (inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝑤 ↔ ¬ 𝑤 < inf((𝐴𝑂𝐵), ℝ*, < )))
4543, 44mpbid 231 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → ¬ 𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))
4611, 45pm2.65da 814 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) → ¬ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < )))
4746nrexdv 3142 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → ¬ ∃𝑤 ∈ ℚ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < )))
48 qbtwnxr 13027 . . . . . 6 ((𝐴 ∈ ℝ* ∧ inf((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*𝐴 < inf((𝐴𝑂𝐵), ℝ*, < )) → ∃𝑤 ∈ ℚ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < )))
49483expia 1120 . . . . 5 ((𝐴 ∈ ℝ* ∧ inf((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*) → (𝐴 < inf((𝐴𝑂𝐵), ℝ*, < ) → ∃𝑤 ∈ ℚ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))))
5010, 9, 49syl2anc 584 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝐴 < inf((𝐴𝑂𝐵), ℝ*, < ) → ∃𝑤 ∈ ℚ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))))
5147, 50mtod 197 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → ¬ 𝐴 < inf((𝐴𝑂𝐵), ℝ*, < ))
529, 10, 51xrnltled 11136 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝐴)
534simp2d 1142 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐴𝑅𝑤)
5410adantr 481 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐴 ∈ ℝ*)
55 ixxub.5 . . . . . 6 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑅𝑤𝐴𝑤))
5654, 5, 55syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝐴𝑅𝑤𝐴𝑤))
5753, 56mpd 15 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐴𝑤)
5857ralrimiva 3139 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → ∀𝑤 ∈ (𝐴𝑂𝐵)𝐴𝑤)
59 infxrgelb 13162 . . . 4 (((𝐴𝑂𝐵) ⊆ ℝ*𝐴 ∈ ℝ*) → (𝐴 ≤ inf((𝐴𝑂𝐵), ℝ*, < ) ↔ ∀𝑤 ∈ (𝐴𝑂𝐵)𝐴𝑤))
607, 10, 59syl2anc 584 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝐴 ≤ inf((𝐴𝑂𝐵), ℝ*, < ) ↔ ∀𝑤 ∈ (𝐴𝑂𝐵)𝐴𝑤))
6158, 60mpbird 256 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → 𝐴 ≤ inf((𝐴𝑂𝐵), ℝ*, < ))
629, 10, 52, 61xrletrid 12982 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → inf((𝐴𝑂𝐵), ℝ*, < ) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wex 1780  wcel 2105  wne 2940  wral 3061  wrex 3070  {crab 3403  wss 3897  c0 4268   class class class wbr 5089  (class class class)co 7329  cmpo 7331  infcinf 9290  *cxr 11101   < clt 11102  cle 11103  cq 12781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041  ax-pre-sup 11042
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-sup 9291  df-inf 9292  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-div 11726  df-nn 12067  df-n0 12327  df-z 12413  df-uz 12676  df-q 12782
This theorem is referenced by:  ioorf  24835  ioorinv2  24837  ioossioobi  43380
  Copyright terms: Public domain W3C validator