Proof of Theorem ixxub
Step | Hyp | Ref
| Expression |
1 | | ixx.1 |
. . . . . . . . 9
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
2 | 1 | elixx1 13097 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵))) |
3 | 2 | 3adant3 1131 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵))) |
4 | 3 | biimpa 477 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵)) |
5 | 4 | simp1d 1141 |
. . . . 5
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤 ∈ ℝ*) |
6 | 5 | ex 413 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝑤 ∈ (𝐴𝑂𝐵) → 𝑤 ∈
ℝ*)) |
7 | 6 | ssrdv 3928 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝐴𝑂𝐵) ⊆
ℝ*) |
8 | | supxrcl 13058 |
. . 3
⊢ ((𝐴𝑂𝐵) ⊆ ℝ* →
sup((𝐴𝑂𝐵), ℝ*, < ) ∈
ℝ*) |
9 | 7, 8 | syl 17 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → sup((𝐴𝑂𝐵), ℝ*, < ) ∈
ℝ*) |
10 | | simp2 1136 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → 𝐵 ∈
ℝ*) |
11 | 4 | simp3d 1143 |
. . . . 5
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤𝑆𝐵) |
12 | 10 | adantr 481 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐵 ∈
ℝ*) |
13 | | ixxub.3 |
. . . . . 6
⊢ ((𝑤 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝑤𝑆𝐵 → 𝑤 ≤ 𝐵)) |
14 | 5, 12, 13 | syl2anc 584 |
. . . . 5
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝑤𝑆𝐵 → 𝑤 ≤ 𝐵)) |
15 | 11, 14 | mpd 15 |
. . . 4
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤 ≤ 𝐵) |
16 | 15 | ralrimiva 3104 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → ∀𝑤 ∈ (𝐴𝑂𝐵)𝑤 ≤ 𝐵) |
17 | | supxrleub 13069 |
. . . 4
⊢ (((𝐴𝑂𝐵) ⊆ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (sup((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝐵 ↔ ∀𝑤 ∈ (𝐴𝑂𝐵)𝑤 ≤ 𝐵)) |
18 | 7, 10, 17 | syl2anc 584 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (sup((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝐵 ↔ ∀𝑤 ∈ (𝐴𝑂𝐵)𝑤 ≤ 𝐵)) |
19 | 16, 18 | mpbird 256 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → sup((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝐵) |
20 | | simprl 768 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤 ∧ 𝑤 < 𝐵)) → sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤) |
21 | 7 | ad2antrr 723 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤 ∧ 𝑤 < 𝐵)) → (𝐴𝑂𝐵) ⊆
ℝ*) |
22 | | qre 12702 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ ℚ → 𝑤 ∈
ℝ) |
23 | 22 | rexrd 11034 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ℚ → 𝑤 ∈
ℝ*) |
24 | 23 | ad2antlr 724 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤 ∧ 𝑤 < 𝐵)) → 𝑤 ∈ ℝ*) |
25 | | simp1 1135 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → 𝐴 ∈
ℝ*) |
26 | 25 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤 ∧ 𝑤 < 𝐵)) → 𝐴 ∈
ℝ*) |
27 | 9 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤 ∧ 𝑤 < 𝐵)) → sup((𝐴𝑂𝐵), ℝ*, < ) ∈
ℝ*) |
28 | | simp3 1137 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝐴𝑂𝐵) ≠ ∅) |
29 | | n0 4281 |
. . . . . . . . . . . . . 14
⊢ ((𝐴𝑂𝐵) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝐴𝑂𝐵)) |
30 | 28, 29 | sylib 217 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → ∃𝑤 𝑤 ∈ (𝐴𝑂𝐵)) |
31 | 25 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐴 ∈
ℝ*) |
32 | 9 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → sup((𝐴𝑂𝐵), ℝ*, < ) ∈
ℝ*) |
33 | 4 | simp2d 1142 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐴𝑅𝑤) |
34 | | ixxub.5 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℝ*
∧ 𝑤 ∈
ℝ*) → (𝐴𝑅𝑤 → 𝐴 ≤ 𝑤)) |
35 | 31, 5, 34 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝐴𝑅𝑤 → 𝐴 ≤ 𝑤)) |
36 | 33, 35 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐴 ≤ 𝑤) |
37 | | supxrub 13067 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴𝑂𝐵) ⊆ ℝ* ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤 ≤ sup((𝐴𝑂𝐵), ℝ*, <
)) |
38 | 7, 37 | sylan 580 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤 ≤ sup((𝐴𝑂𝐵), ℝ*, <
)) |
39 | 31, 5, 32, 36, 38 | xrletrd 12905 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐴 ≤ sup((𝐴𝑂𝐵), ℝ*, <
)) |
40 | 30, 39 | exlimddv 1939 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → 𝐴 ≤ sup((𝐴𝑂𝐵), ℝ*, <
)) |
41 | 40 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤 ∧ 𝑤 < 𝐵)) → 𝐴 ≤ sup((𝐴𝑂𝐵), ℝ*, <
)) |
42 | 26, 27, 24, 41, 20 | xrlelttrd 12903 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤 ∧ 𝑤 < 𝐵)) → 𝐴 < 𝑤) |
43 | | ixxub.4 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ 𝑤 ∈
ℝ*) → (𝐴 < 𝑤 → 𝐴𝑅𝑤)) |
44 | 26, 24, 43 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤 ∧ 𝑤 < 𝐵)) → (𝐴 < 𝑤 → 𝐴𝑅𝑤)) |
45 | 42, 44 | mpd 15 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤 ∧ 𝑤 < 𝐵)) → 𝐴𝑅𝑤) |
46 | | simprr 770 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤 ∧ 𝑤 < 𝐵)) → 𝑤 < 𝐵) |
47 | 10 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤 ∧ 𝑤 < 𝐵)) → 𝐵 ∈
ℝ*) |
48 | | ixxub.2 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝑤 < 𝐵 → 𝑤𝑆𝐵)) |
49 | 24, 47, 48 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤 ∧ 𝑤 < 𝐵)) → (𝑤 < 𝐵 → 𝑤𝑆𝐵)) |
50 | 46, 49 | mpd 15 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤 ∧ 𝑤 < 𝐵)) → 𝑤𝑆𝐵) |
51 | 3 | ad2antrr 723 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤 ∧ 𝑤 < 𝐵)) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵))) |
52 | 24, 45, 50, 51 | mpbir3and 1341 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤 ∧ 𝑤 < 𝐵)) → 𝑤 ∈ (𝐴𝑂𝐵)) |
53 | 21, 52, 37 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤 ∧ 𝑤 < 𝐵)) → 𝑤 ≤ sup((𝐴𝑂𝐵), ℝ*, <
)) |
54 | 24, 27 | xrlenltd 11050 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤 ∧ 𝑤 < 𝐵)) → (𝑤 ≤ sup((𝐴𝑂𝐵), ℝ*, < ) ↔ ¬
sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤)) |
55 | 53, 54 | mpbid 231 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤 ∧ 𝑤 < 𝐵)) → ¬ sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤) |
56 | 20, 55 | pm2.65da 814 |
. . . . 5
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) → ¬ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤 ∧ 𝑤 < 𝐵)) |
57 | 56 | nrexdv 3199 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → ¬ ∃𝑤 ∈ ℚ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤 ∧ 𝑤 < 𝐵)) |
58 | | qbtwnxr 12943 |
. . . . . 6
⊢
((sup((𝐴𝑂𝐵), ℝ*, < ) ∈
ℝ* ∧ 𝐵
∈ ℝ* ∧ sup((𝐴𝑂𝐵), ℝ*, < ) < 𝐵) → ∃𝑤 ∈ ℚ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤 ∧ 𝑤 < 𝐵)) |
59 | 58 | 3expia 1120 |
. . . . 5
⊢
((sup((𝐴𝑂𝐵), ℝ*, < ) ∈
ℝ* ∧ 𝐵
∈ ℝ*) → (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝐵 → ∃𝑤 ∈ ℚ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤 ∧ 𝑤 < 𝐵))) |
60 | 9, 10, 59 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝐵 → ∃𝑤 ∈ ℚ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤 ∧ 𝑤 < 𝐵))) |
61 | 57, 60 | mtod 197 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → ¬ sup((𝐴𝑂𝐵), ℝ*, < ) < 𝐵) |
62 | 10, 9, 61 | xrnltled 11052 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → 𝐵 ≤ sup((𝐴𝑂𝐵), ℝ*, <
)) |
63 | 9, 10, 19, 62 | xrletrid 12898 |
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → sup((𝐴𝑂𝐵), ℝ*, < ) = 𝐵) |