MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxub Structured version   Visualization version   GIF version

Theorem ixxub 13109
Description: Extract the upper bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014.)
Hypotheses
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
ixxub.2 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 < 𝐵𝑤𝑆𝐵))
ixxub.3 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝐵))
ixxub.4 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑅𝑤))
ixxub.5 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑅𝑤𝐴𝑤))
Assertion
Ref Expression
ixxub ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → sup((𝐴𝑂𝐵), ℝ*, < ) = 𝐵)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑂   𝑤,𝐵,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑤)   𝑆(𝑤)   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem ixxub
StepHypRef Expression
1 ixx.1 . . . . . . . . 9 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
21elixx1 13097 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
323adant3 1131 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
43biimpa 477 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵))
54simp1d 1141 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤 ∈ ℝ*)
65ex 413 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝑤 ∈ (𝐴𝑂𝐵) → 𝑤 ∈ ℝ*))
76ssrdv 3928 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝐴𝑂𝐵) ⊆ ℝ*)
8 supxrcl 13058 . . 3 ((𝐴𝑂𝐵) ⊆ ℝ* → sup((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*)
97, 8syl 17 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → sup((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*)
10 simp2 1136 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → 𝐵 ∈ ℝ*)
114simp3d 1143 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤𝑆𝐵)
1210adantr 481 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐵 ∈ ℝ*)
13 ixxub.3 . . . . . 6 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝐵))
145, 12, 13syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝑤𝑆𝐵𝑤𝐵))
1511, 14mpd 15 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤𝐵)
1615ralrimiva 3104 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → ∀𝑤 ∈ (𝐴𝑂𝐵)𝑤𝐵)
17 supxrleub 13069 . . . 4 (((𝐴𝑂𝐵) ⊆ ℝ*𝐵 ∈ ℝ*) → (sup((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝐵 ↔ ∀𝑤 ∈ (𝐴𝑂𝐵)𝑤𝐵))
187, 10, 17syl2anc 584 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (sup((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝐵 ↔ ∀𝑤 ∈ (𝐴𝑂𝐵)𝑤𝐵))
1916, 18mpbird 256 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → sup((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝐵)
20 simprl 768 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤𝑤 < 𝐵)) → sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤)
217ad2antrr 723 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤𝑤 < 𝐵)) → (𝐴𝑂𝐵) ⊆ ℝ*)
22 qre 12702 . . . . . . . . . . 11 (𝑤 ∈ ℚ → 𝑤 ∈ ℝ)
2322rexrd 11034 . . . . . . . . . 10 (𝑤 ∈ ℚ → 𝑤 ∈ ℝ*)
2423ad2antlr 724 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤𝑤 < 𝐵)) → 𝑤 ∈ ℝ*)
25 simp1 1135 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → 𝐴 ∈ ℝ*)
2625ad2antrr 723 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤𝑤 < 𝐵)) → 𝐴 ∈ ℝ*)
279ad2antrr 723 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤𝑤 < 𝐵)) → sup((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*)
28 simp3 1137 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝐴𝑂𝐵) ≠ ∅)
29 n0 4281 . . . . . . . . . . . . . 14 ((𝐴𝑂𝐵) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝐴𝑂𝐵))
3028, 29sylib 217 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → ∃𝑤 𝑤 ∈ (𝐴𝑂𝐵))
3125adantr 481 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐴 ∈ ℝ*)
329adantr 481 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → sup((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*)
334simp2d 1142 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐴𝑅𝑤)
34 ixxub.5 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑅𝑤𝐴𝑤))
3531, 5, 34syl2anc 584 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝐴𝑅𝑤𝐴𝑤))
3633, 35mpd 15 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐴𝑤)
37 supxrub 13067 . . . . . . . . . . . . . . 15 (((𝐴𝑂𝐵) ⊆ ℝ*𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤 ≤ sup((𝐴𝑂𝐵), ℝ*, < ))
387, 37sylan 580 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤 ≤ sup((𝐴𝑂𝐵), ℝ*, < ))
3931, 5, 32, 36, 38xrletrd 12905 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐴 ≤ sup((𝐴𝑂𝐵), ℝ*, < ))
4030, 39exlimddv 1939 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → 𝐴 ≤ sup((𝐴𝑂𝐵), ℝ*, < ))
4140ad2antrr 723 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤𝑤 < 𝐵)) → 𝐴 ≤ sup((𝐴𝑂𝐵), ℝ*, < ))
4226, 27, 24, 41, 20xrlelttrd 12903 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤𝑤 < 𝐵)) → 𝐴 < 𝑤)
43 ixxub.4 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑅𝑤))
4426, 24, 43syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤𝑤 < 𝐵)) → (𝐴 < 𝑤𝐴𝑅𝑤))
4542, 44mpd 15 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤𝑤 < 𝐵)) → 𝐴𝑅𝑤)
46 simprr 770 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤𝑤 < 𝐵)) → 𝑤 < 𝐵)
4710ad2antrr 723 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤𝑤 < 𝐵)) → 𝐵 ∈ ℝ*)
48 ixxub.2 . . . . . . . . . . 11 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 < 𝐵𝑤𝑆𝐵))
4924, 47, 48syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤𝑤 < 𝐵)) → (𝑤 < 𝐵𝑤𝑆𝐵))
5046, 49mpd 15 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤𝑤 < 𝐵)) → 𝑤𝑆𝐵)
513ad2antrr 723 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤𝑤 < 𝐵)) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
5224, 45, 50, 51mpbir3and 1341 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤𝑤 < 𝐵)) → 𝑤 ∈ (𝐴𝑂𝐵))
5321, 52, 37syl2anc 584 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤𝑤 < 𝐵)) → 𝑤 ≤ sup((𝐴𝑂𝐵), ℝ*, < ))
5424, 27xrlenltd 11050 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤𝑤 < 𝐵)) → (𝑤 ≤ sup((𝐴𝑂𝐵), ℝ*, < ) ↔ ¬ sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤))
5553, 54mpbid 231 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤𝑤 < 𝐵)) → ¬ sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤)
5620, 55pm2.65da 814 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) → ¬ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤𝑤 < 𝐵))
5756nrexdv 3199 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → ¬ ∃𝑤 ∈ ℚ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤𝑤 < 𝐵))
58 qbtwnxr 12943 . . . . . 6 ((sup((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*𝐵 ∈ ℝ* ∧ sup((𝐴𝑂𝐵), ℝ*, < ) < 𝐵) → ∃𝑤 ∈ ℚ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤𝑤 < 𝐵))
59583expia 1120 . . . . 5 ((sup((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*𝐵 ∈ ℝ*) → (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝐵 → ∃𝑤 ∈ ℚ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤𝑤 < 𝐵)))
609, 10, 59syl2anc 584 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝐵 → ∃𝑤 ∈ ℚ (sup((𝐴𝑂𝐵), ℝ*, < ) < 𝑤𝑤 < 𝐵)))
6157, 60mtod 197 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → ¬ sup((𝐴𝑂𝐵), ℝ*, < ) < 𝐵)
6210, 9, 61xrnltled 11052 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → 𝐵 ≤ sup((𝐴𝑂𝐵), ℝ*, < ))
639, 10, 19, 62xrletrid 12898 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → sup((𝐴𝑂𝐵), ℝ*, < ) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2107  wne 2944  wral 3065  wrex 3066  {crab 3069  wss 3888  c0 4257   class class class wbr 5075  (class class class)co 7284  cmpo 7286  supcsup 9208  *cxr 11017   < clt 11018  cle 11019  cq 12697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-sup 9210  df-inf 9211  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-n0 12243  df-z 12329  df-uz 12592  df-q 12698
This theorem is referenced by:  ioopnfsup  13593  icopnfsup  13594  bndth  24130  ioorf  24746  ioorinv2  24748  ioossioobi  43062
  Copyright terms: Public domain W3C validator