Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > supicclub2 | Structured version Visualization version GIF version |
Description: The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019.) |
Ref | Expression |
---|---|
supicc.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
supicc.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
supicc.3 | ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) |
supicc.4 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
supiccub.1 | ⊢ (𝜑 → 𝐷 ∈ 𝐴) |
supicclub2.1 | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ≤ 𝐷) |
Ref | Expression |
---|---|
supicclub2 | ⊢ (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 13159 | . . 3 ⊢ (𝐵[,]𝐶) ⊆ ℝ* | |
2 | supicc.1 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | supicc.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | supicc.3 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) | |
5 | supicc.4 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
6 | 2, 3, 4, 5 | supicc 13230 | . . 3 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶)) |
7 | 1, 6 | sselid 3924 | . 2 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ*) |
8 | 4, 1 | sstrdi 3938 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
9 | supiccub.1 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝐴) | |
10 | 8, 9 | sseldd 3927 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℝ*) |
11 | supicclub2.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ≤ 𝐷) | |
12 | 8 | sselda 3926 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℝ*) |
13 | 10 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐷 ∈ ℝ*) |
14 | 12, 13 | xrlenltd 11040 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝑧 ≤ 𝐷 ↔ ¬ 𝐷 < 𝑧)) |
15 | 11, 14 | mpbid 231 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ¬ 𝐷 < 𝑧) |
16 | 15 | nrexdv 3200 | . . 3 ⊢ (𝜑 → ¬ ∃𝑧 ∈ 𝐴 𝐷 < 𝑧) |
17 | 2, 3, 4, 5, 9 | supicclub 13232 | . . 3 ⊢ (𝜑 → (𝐷 < sup(𝐴, ℝ, < ) ↔ ∃𝑧 ∈ 𝐴 𝐷 < 𝑧)) |
18 | 16, 17 | mtbird 325 | . 2 ⊢ (𝜑 → ¬ 𝐷 < sup(𝐴, ℝ, < )) |
19 | 7, 10, 18 | xrnltled 11042 | 1 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∈ wcel 2110 ≠ wne 2945 ∃wrex 3067 ⊆ wss 3892 ∅c0 4262 class class class wbr 5079 (class class class)co 7269 supcsup 9175 ℝcr 10869 ℝ*cxr 11007 < clt 11008 ≤ cle 11009 [,]cicc 13079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10926 ax-resscn 10927 ax-1cn 10928 ax-icn 10929 ax-addcl 10930 ax-addrcl 10931 ax-mulcl 10932 ax-mulrcl 10933 ax-mulcom 10934 ax-addass 10935 ax-mulass 10936 ax-distr 10937 ax-i2m1 10938 ax-1ne0 10939 ax-1rid 10940 ax-rnegex 10941 ax-rrecex 10942 ax-cnre 10943 ax-pre-lttri 10944 ax-pre-lttrn 10945 ax-pre-ltadd 10946 ax-pre-mulgt0 10947 ax-pre-sup 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-1st 7822 df-2nd 7823 df-er 8479 df-en 8715 df-dom 8716 df-sdom 8717 df-sup 9177 df-pnf 11010 df-mnf 11011 df-xr 11012 df-ltxr 11013 df-le 11014 df-sub 11205 df-neg 11206 df-icc 13083 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |