MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supicclub2 Structured version   Visualization version   GIF version

Theorem supicclub2 12882
Description: The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019.)
Hypotheses
Ref Expression
supicc.1 (𝜑𝐵 ∈ ℝ)
supicc.2 (𝜑𝐶 ∈ ℝ)
supicc.3 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
supicc.4 (𝜑𝐴 ≠ ∅)
supiccub.1 (𝜑𝐷𝐴)
supicclub2.1 ((𝜑𝑧𝐴) → 𝑧𝐷)
Assertion
Ref Expression
supicclub2 (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐷)
Distinct variable groups:   𝑧,𝐴   𝑧,𝐷   𝜑,𝑧
Allowed substitution hints:   𝐵(𝑧)   𝐶(𝑧)

Proof of Theorem supicclub2
StepHypRef Expression
1 iccssxr 12808 . . 3 (𝐵[,]𝐶) ⊆ ℝ*
2 supicc.1 . . . 4 (𝜑𝐵 ∈ ℝ)
3 supicc.2 . . . 4 (𝜑𝐶 ∈ ℝ)
4 supicc.3 . . . 4 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
5 supicc.4 . . . 4 (𝜑𝐴 ≠ ∅)
62, 3, 4, 5supicc 12879 . . 3 (𝜑 → sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶))
71, 6sseldi 3949 . 2 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ*)
84, 1sstrdi 3963 . . 3 (𝜑𝐴 ⊆ ℝ*)
9 supiccub.1 . . 3 (𝜑𝐷𝐴)
108, 9sseldd 3952 . 2 (𝜑𝐷 ∈ ℝ*)
11 supicclub2.1 . . . . 5 ((𝜑𝑧𝐴) → 𝑧𝐷)
128sselda 3951 . . . . . 6 ((𝜑𝑧𝐴) → 𝑧 ∈ ℝ*)
1310adantr 484 . . . . . 6 ((𝜑𝑧𝐴) → 𝐷 ∈ ℝ*)
1412, 13xrlenltd 10694 . . . . 5 ((𝜑𝑧𝐴) → (𝑧𝐷 ↔ ¬ 𝐷 < 𝑧))
1511, 14mpbid 235 . . . 4 ((𝜑𝑧𝐴) → ¬ 𝐷 < 𝑧)
1615nrexdv 3262 . . 3 (𝜑 → ¬ ∃𝑧𝐴 𝐷 < 𝑧)
172, 3, 4, 5, 9supicclub 12881 . . 3 (𝜑 → (𝐷 < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 𝐷 < 𝑧))
1816, 17mtbird 328 . 2 (𝜑 → ¬ 𝐷 < sup(𝐴, ℝ, < ))
197, 10, 18xrnltled 10696 1 (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wcel 2115  wne 3013  wrex 3133  wss 3918  c0 4274   class class class wbr 5049  (class class class)co 7140  supcsup 8890  cr 10523  *cxr 10661   < clt 10662  cle 10663  [,]cicc 12729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446  ax-cnex 10580  ax-resscn 10581  ax-1cn 10582  ax-icn 10583  ax-addcl 10584  ax-addrcl 10585  ax-mulcl 10586  ax-mulrcl 10587  ax-mulcom 10588  ax-addass 10589  ax-mulass 10590  ax-distr 10591  ax-i2m1 10592  ax-1ne0 10593  ax-1rid 10594  ax-rnegex 10595  ax-rrecex 10596  ax-cnre 10597  ax-pre-lttri 10598  ax-pre-lttrn 10599  ax-pre-ltadd 10600  ax-pre-mulgt0 10601  ax-pre-sup 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4822  df-iun 4904  df-br 5050  df-opab 5112  df-mpt 5130  df-id 5443  df-po 5457  df-so 5458  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-1st 7674  df-2nd 7675  df-er 8274  df-en 8495  df-dom 8496  df-sdom 8497  df-sup 8892  df-pnf 10664  df-mnf 10665  df-xr 10666  df-ltxr 10667  df-le 10668  df-sub 10859  df-neg 10860  df-icc 12733
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator