| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supicclub2 | Structured version Visualization version GIF version | ||
| Description: The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019.) |
| Ref | Expression |
|---|---|
| supicc.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| supicc.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| supicc.3 | ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) |
| supicc.4 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| supiccub.1 | ⊢ (𝜑 → 𝐷 ∈ 𝐴) |
| supicclub2.1 | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ≤ 𝐷) |
| Ref | Expression |
|---|---|
| supicclub2 | ⊢ (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssxr 13398 | . . 3 ⊢ (𝐵[,]𝐶) ⊆ ℝ* | |
| 2 | supicc.1 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | supicc.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 4 | supicc.3 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) | |
| 5 | supicc.4 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 6 | 2, 3, 4, 5 | supicc 13469 | . . 3 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶)) |
| 7 | 1, 6 | sselid 3947 | . 2 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ*) |
| 8 | 4, 1 | sstrdi 3962 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
| 9 | supiccub.1 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝐴) | |
| 10 | 8, 9 | sseldd 3950 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℝ*) |
| 11 | supicclub2.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ≤ 𝐷) | |
| 12 | 8 | sselda 3949 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℝ*) |
| 13 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐷 ∈ ℝ*) |
| 14 | 12, 13 | xrlenltd 11247 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝑧 ≤ 𝐷 ↔ ¬ 𝐷 < 𝑧)) |
| 15 | 11, 14 | mpbid 232 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ¬ 𝐷 < 𝑧) |
| 16 | 15 | nrexdv 3129 | . . 3 ⊢ (𝜑 → ¬ ∃𝑧 ∈ 𝐴 𝐷 < 𝑧) |
| 17 | 2, 3, 4, 5, 9 | supicclub 13471 | . . 3 ⊢ (𝜑 → (𝐷 < sup(𝐴, ℝ, < ) ↔ ∃𝑧 ∈ 𝐴 𝐷 < 𝑧)) |
| 18 | 16, 17 | mtbird 325 | . 2 ⊢ (𝜑 → ¬ 𝐷 < sup(𝐴, ℝ, < )) |
| 19 | 7, 10, 18 | xrnltled 11249 | 1 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 ⊆ wss 3917 ∅c0 4299 class class class wbr 5110 (class class class)co 7390 supcsup 9398 ℝcr 11074 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 [,]cicc 13316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-icc 13320 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |