MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supicclub2 Structured version   Visualization version   GIF version

Theorem supicclub2 13236
Description: The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019.)
Hypotheses
Ref Expression
supicc.1 (𝜑𝐵 ∈ ℝ)
supicc.2 (𝜑𝐶 ∈ ℝ)
supicc.3 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
supicc.4 (𝜑𝐴 ≠ ∅)
supiccub.1 (𝜑𝐷𝐴)
supicclub2.1 ((𝜑𝑧𝐴) → 𝑧𝐷)
Assertion
Ref Expression
supicclub2 (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐷)
Distinct variable groups:   𝑧,𝐴   𝑧,𝐷   𝜑,𝑧
Allowed substitution hints:   𝐵(𝑧)   𝐶(𝑧)

Proof of Theorem supicclub2
StepHypRef Expression
1 iccssxr 13162 . . 3 (𝐵[,]𝐶) ⊆ ℝ*
2 supicc.1 . . . 4 (𝜑𝐵 ∈ ℝ)
3 supicc.2 . . . 4 (𝜑𝐶 ∈ ℝ)
4 supicc.3 . . . 4 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
5 supicc.4 . . . 4 (𝜑𝐴 ≠ ∅)
62, 3, 4, 5supicc 13233 . . 3 (𝜑 → sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶))
71, 6sselid 3919 . 2 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ*)
84, 1sstrdi 3933 . . 3 (𝜑𝐴 ⊆ ℝ*)
9 supiccub.1 . . 3 (𝜑𝐷𝐴)
108, 9sseldd 3922 . 2 (𝜑𝐷 ∈ ℝ*)
11 supicclub2.1 . . . . 5 ((𝜑𝑧𝐴) → 𝑧𝐷)
128sselda 3921 . . . . . 6 ((𝜑𝑧𝐴) → 𝑧 ∈ ℝ*)
1310adantr 481 . . . . . 6 ((𝜑𝑧𝐴) → 𝐷 ∈ ℝ*)
1412, 13xrlenltd 11041 . . . . 5 ((𝜑𝑧𝐴) → (𝑧𝐷 ↔ ¬ 𝐷 < 𝑧))
1511, 14mpbid 231 . . . 4 ((𝜑𝑧𝐴) → ¬ 𝐷 < 𝑧)
1615nrexdv 3198 . . 3 (𝜑 → ¬ ∃𝑧𝐴 𝐷 < 𝑧)
172, 3, 4, 5, 9supicclub 13235 . . 3 (𝜑 → (𝐷 < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 𝐷 < 𝑧))
1816, 17mtbird 325 . 2 (𝜑 → ¬ 𝐷 < sup(𝐴, ℝ, < ))
197, 10, 18xrnltled 11043 1 (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wcel 2106  wne 2943  wrex 3065  wss 3887  c0 4256   class class class wbr 5074  (class class class)co 7275  supcsup 9199  cr 10870  *cxr 11008   < clt 11009  cle 11010  [,]cicc 13082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-icc 13086
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator