|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > supicclub2 | Structured version Visualization version GIF version | ||
| Description: The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019.) | 
| Ref | Expression | 
|---|---|
| supicc.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| supicc.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) | 
| supicc.3 | ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) | 
| supicc.4 | ⊢ (𝜑 → 𝐴 ≠ ∅) | 
| supiccub.1 | ⊢ (𝜑 → 𝐷 ∈ 𝐴) | 
| supicclub2.1 | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ≤ 𝐷) | 
| Ref | Expression | 
|---|---|
| supicclub2 | ⊢ (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐷) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iccssxr 13470 | . . 3 ⊢ (𝐵[,]𝐶) ⊆ ℝ* | |
| 2 | supicc.1 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | supicc.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 4 | supicc.3 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) | |
| 5 | supicc.4 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 6 | 2, 3, 4, 5 | supicc 13541 | . . 3 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶)) | 
| 7 | 1, 6 | sselid 3981 | . 2 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ*) | 
| 8 | 4, 1 | sstrdi 3996 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) | 
| 9 | supiccub.1 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝐴) | |
| 10 | 8, 9 | sseldd 3984 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℝ*) | 
| 11 | supicclub2.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ≤ 𝐷) | |
| 12 | 8 | sselda 3983 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℝ*) | 
| 13 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐷 ∈ ℝ*) | 
| 14 | 12, 13 | xrlenltd 11327 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝑧 ≤ 𝐷 ↔ ¬ 𝐷 < 𝑧)) | 
| 15 | 11, 14 | mpbid 232 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ¬ 𝐷 < 𝑧) | 
| 16 | 15 | nrexdv 3149 | . . 3 ⊢ (𝜑 → ¬ ∃𝑧 ∈ 𝐴 𝐷 < 𝑧) | 
| 17 | 2, 3, 4, 5, 9 | supicclub 13543 | . . 3 ⊢ (𝜑 → (𝐷 < sup(𝐴, ℝ, < ) ↔ ∃𝑧 ∈ 𝐴 𝐷 < 𝑧)) | 
| 18 | 16, 17 | mtbird 325 | . 2 ⊢ (𝜑 → ¬ 𝐷 < sup(𝐴, ℝ, < )) | 
| 19 | 7, 10, 18 | xrnltled 11329 | 1 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐷) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2940 ∃wrex 3070 ⊆ wss 3951 ∅c0 4333 class class class wbr 5143 (class class class)co 7431 supcsup 9480 ℝcr 11154 ℝ*cxr 11294 < clt 11295 ≤ cle 11296 [,]cicc 13390 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-icc 13394 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |