![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supicclub2 | Structured version Visualization version GIF version |
Description: The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019.) |
Ref | Expression |
---|---|
supicc.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
supicc.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
supicc.3 | ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) |
supicc.4 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
supiccub.1 | ⊢ (𝜑 → 𝐷 ∈ 𝐴) |
supicclub2.1 | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ≤ 𝐷) |
Ref | Expression |
---|---|
supicclub2 | ⊢ (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 13461 | . . 3 ⊢ (𝐵[,]𝐶) ⊆ ℝ* | |
2 | supicc.1 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | supicc.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | supicc.3 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) | |
5 | supicc.4 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
6 | 2, 3, 4, 5 | supicc 13532 | . . 3 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶)) |
7 | 1, 6 | sselid 3977 | . 2 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ*) |
8 | 4, 1 | sstrdi 3992 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
9 | supiccub.1 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝐴) | |
10 | 8, 9 | sseldd 3980 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℝ*) |
11 | supicclub2.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ≤ 𝐷) | |
12 | 8 | sselda 3979 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℝ*) |
13 | 10 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐷 ∈ ℝ*) |
14 | 12, 13 | xrlenltd 11330 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝑧 ≤ 𝐷 ↔ ¬ 𝐷 < 𝑧)) |
15 | 11, 14 | mpbid 231 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ¬ 𝐷 < 𝑧) |
16 | 15 | nrexdv 3139 | . . 3 ⊢ (𝜑 → ¬ ∃𝑧 ∈ 𝐴 𝐷 < 𝑧) |
17 | 2, 3, 4, 5, 9 | supicclub 13534 | . . 3 ⊢ (𝜑 → (𝐷 < sup(𝐴, ℝ, < ) ↔ ∃𝑧 ∈ 𝐴 𝐷 < 𝑧)) |
18 | 16, 17 | mtbird 324 | . 2 ⊢ (𝜑 → ¬ 𝐷 < sup(𝐴, ℝ, < )) |
19 | 7, 10, 18 | xrnltled 11332 | 1 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∈ wcel 2099 ≠ wne 2930 ∃wrex 3060 ⊆ wss 3947 ∅c0 4325 class class class wbr 5153 (class class class)co 7424 supcsup 9483 ℝcr 11157 ℝ*cxr 11297 < clt 11298 ≤ cle 11299 [,]cicc 13381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-po 5594 df-so 5595 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-1st 8003 df-2nd 8004 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-sup 9485 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-icc 13385 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |