MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supicclub2 Structured version   Visualization version   GIF version

Theorem supicclub2 13407
Description: The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019.)
Hypotheses
Ref Expression
supicc.1 (𝜑𝐵 ∈ ℝ)
supicc.2 (𝜑𝐶 ∈ ℝ)
supicc.3 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
supicc.4 (𝜑𝐴 ≠ ∅)
supiccub.1 (𝜑𝐷𝐴)
supicclub2.1 ((𝜑𝑧𝐴) → 𝑧𝐷)
Assertion
Ref Expression
supicclub2 (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐷)
Distinct variable groups:   𝑧,𝐴   𝑧,𝐷   𝜑,𝑧
Allowed substitution hints:   𝐵(𝑧)   𝐶(𝑧)

Proof of Theorem supicclub2
StepHypRef Expression
1 iccssxr 13333 . . 3 (𝐵[,]𝐶) ⊆ ℝ*
2 supicc.1 . . . 4 (𝜑𝐵 ∈ ℝ)
3 supicc.2 . . . 4 (𝜑𝐶 ∈ ℝ)
4 supicc.3 . . . 4 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
5 supicc.4 . . . 4 (𝜑𝐴 ≠ ∅)
62, 3, 4, 5supicc 13404 . . 3 (𝜑 → sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶))
71, 6sselid 3933 . 2 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ*)
84, 1sstrdi 3948 . . 3 (𝜑𝐴 ⊆ ℝ*)
9 supiccub.1 . . 3 (𝜑𝐷𝐴)
108, 9sseldd 3936 . 2 (𝜑𝐷 ∈ ℝ*)
11 supicclub2.1 . . . . 5 ((𝜑𝑧𝐴) → 𝑧𝐷)
128sselda 3935 . . . . . 6 ((𝜑𝑧𝐴) → 𝑧 ∈ ℝ*)
1310adantr 480 . . . . . 6 ((𝜑𝑧𝐴) → 𝐷 ∈ ℝ*)
1412, 13xrlenltd 11181 . . . . 5 ((𝜑𝑧𝐴) → (𝑧𝐷 ↔ ¬ 𝐷 < 𝑧))
1511, 14mpbid 232 . . . 4 ((𝜑𝑧𝐴) → ¬ 𝐷 < 𝑧)
1615nrexdv 3124 . . 3 (𝜑 → ¬ ∃𝑧𝐴 𝐷 < 𝑧)
172, 3, 4, 5, 9supicclub 13406 . . 3 (𝜑 → (𝐷 < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 𝐷 < 𝑧))
1816, 17mtbird 325 . 2 (𝜑 → ¬ 𝐷 < sup(𝐴, ℝ, < ))
197, 10, 18xrnltled 11184 1 (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  wne 2925  wrex 3053  wss 3903  c0 4284   class class class wbr 5092  (class class class)co 7349  supcsup 9330  cr 11008  *cxr 11148   < clt 11149  cle 11150  [,]cicc 13251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-icc 13255
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator