MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supicclub2 Structured version   Visualization version   GIF version

Theorem supicclub2 13544
Description: The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019.)
Hypotheses
Ref Expression
supicc.1 (𝜑𝐵 ∈ ℝ)
supicc.2 (𝜑𝐶 ∈ ℝ)
supicc.3 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
supicc.4 (𝜑𝐴 ≠ ∅)
supiccub.1 (𝜑𝐷𝐴)
supicclub2.1 ((𝜑𝑧𝐴) → 𝑧𝐷)
Assertion
Ref Expression
supicclub2 (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐷)
Distinct variable groups:   𝑧,𝐴   𝑧,𝐷   𝜑,𝑧
Allowed substitution hints:   𝐵(𝑧)   𝐶(𝑧)

Proof of Theorem supicclub2
StepHypRef Expression
1 iccssxr 13470 . . 3 (𝐵[,]𝐶) ⊆ ℝ*
2 supicc.1 . . . 4 (𝜑𝐵 ∈ ℝ)
3 supicc.2 . . . 4 (𝜑𝐶 ∈ ℝ)
4 supicc.3 . . . 4 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
5 supicc.4 . . . 4 (𝜑𝐴 ≠ ∅)
62, 3, 4, 5supicc 13541 . . 3 (𝜑 → sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶))
71, 6sselid 3981 . 2 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ*)
84, 1sstrdi 3996 . . 3 (𝜑𝐴 ⊆ ℝ*)
9 supiccub.1 . . 3 (𝜑𝐷𝐴)
108, 9sseldd 3984 . 2 (𝜑𝐷 ∈ ℝ*)
11 supicclub2.1 . . . . 5 ((𝜑𝑧𝐴) → 𝑧𝐷)
128sselda 3983 . . . . . 6 ((𝜑𝑧𝐴) → 𝑧 ∈ ℝ*)
1310adantr 480 . . . . . 6 ((𝜑𝑧𝐴) → 𝐷 ∈ ℝ*)
1412, 13xrlenltd 11327 . . . . 5 ((𝜑𝑧𝐴) → (𝑧𝐷 ↔ ¬ 𝐷 < 𝑧))
1511, 14mpbid 232 . . . 4 ((𝜑𝑧𝐴) → ¬ 𝐷 < 𝑧)
1615nrexdv 3149 . . 3 (𝜑 → ¬ ∃𝑧𝐴 𝐷 < 𝑧)
172, 3, 4, 5, 9supicclub 13543 . . 3 (𝜑 → (𝐷 < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 𝐷 < 𝑧))
1816, 17mtbird 325 . 2 (𝜑 → ¬ 𝐷 < sup(𝐴, ℝ, < ))
197, 10, 18xrnltled 11329 1 (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108  wne 2940  wrex 3070  wss 3951  c0 4333   class class class wbr 5143  (class class class)co 7431  supcsup 9480  cr 11154  *cxr 11294   < clt 11295  cle 11296  [,]cicc 13390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-icc 13394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator