MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supicclub2 Structured version   Visualization version   GIF version

Theorem supicclub2 13165
Description: The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019.)
Hypotheses
Ref Expression
supicc.1 (𝜑𝐵 ∈ ℝ)
supicc.2 (𝜑𝐶 ∈ ℝ)
supicc.3 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
supicc.4 (𝜑𝐴 ≠ ∅)
supiccub.1 (𝜑𝐷𝐴)
supicclub2.1 ((𝜑𝑧𝐴) → 𝑧𝐷)
Assertion
Ref Expression
supicclub2 (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐷)
Distinct variable groups:   𝑧,𝐴   𝑧,𝐷   𝜑,𝑧
Allowed substitution hints:   𝐵(𝑧)   𝐶(𝑧)

Proof of Theorem supicclub2
StepHypRef Expression
1 iccssxr 13091 . . 3 (𝐵[,]𝐶) ⊆ ℝ*
2 supicc.1 . . . 4 (𝜑𝐵 ∈ ℝ)
3 supicc.2 . . . 4 (𝜑𝐶 ∈ ℝ)
4 supicc.3 . . . 4 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
5 supicc.4 . . . 4 (𝜑𝐴 ≠ ∅)
62, 3, 4, 5supicc 13162 . . 3 (𝜑 → sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶))
71, 6sselid 3915 . 2 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ*)
84, 1sstrdi 3929 . . 3 (𝜑𝐴 ⊆ ℝ*)
9 supiccub.1 . . 3 (𝜑𝐷𝐴)
108, 9sseldd 3918 . 2 (𝜑𝐷 ∈ ℝ*)
11 supicclub2.1 . . . . 5 ((𝜑𝑧𝐴) → 𝑧𝐷)
128sselda 3917 . . . . . 6 ((𝜑𝑧𝐴) → 𝑧 ∈ ℝ*)
1310adantr 480 . . . . . 6 ((𝜑𝑧𝐴) → 𝐷 ∈ ℝ*)
1412, 13xrlenltd 10972 . . . . 5 ((𝜑𝑧𝐴) → (𝑧𝐷 ↔ ¬ 𝐷 < 𝑧))
1511, 14mpbid 231 . . . 4 ((𝜑𝑧𝐴) → ¬ 𝐷 < 𝑧)
1615nrexdv 3197 . . 3 (𝜑 → ¬ ∃𝑧𝐴 𝐷 < 𝑧)
172, 3, 4, 5, 9supicclub 13164 . . 3 (𝜑 → (𝐷 < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 𝐷 < 𝑧))
1816, 17mtbird 324 . 2 (𝜑 → ¬ 𝐷 < sup(𝐴, ℝ, < ))
197, 10, 18xrnltled 10974 1 (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108  wne 2942  wrex 3064  wss 3883  c0 4253   class class class wbr 5070  (class class class)co 7255  supcsup 9129  cr 10801  *cxr 10939   < clt 10940  cle 10941  [,]cicc 13011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-icc 13015
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator