Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > supxrub | Structured version Visualization version GIF version |
Description: A member of a set of extended reals is less than or equal to the set's supremum. (Contributed by NM, 7-Feb-2006.) |
Ref | Expression |
---|---|
supxrub | ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel2 3889 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
2 | supxrcl 12762 | . . 3 ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) | |
3 | 2 | adantr 484 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
4 | xrltso 12588 | . . . . 5 ⊢ < Or ℝ* | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → < Or ℝ*) |
6 | xrsupss 12756 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
7 | 5, 6 | supub 8969 | . . 3 ⊢ (𝐴 ⊆ ℝ* → (𝐵 ∈ 𝐴 → ¬ sup(𝐴, ℝ*, < ) < 𝐵)) |
8 | 7 | imp 410 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → ¬ sup(𝐴, ℝ*, < ) < 𝐵) |
9 | 1, 3, 8 | xrnltled 10760 | 1 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∈ wcel 2111 ⊆ wss 3860 class class class wbr 5036 Or wor 5446 supcsup 8950 ℝ*cxr 10725 < clt 10726 ≤ cle 10727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-po 5447 df-so 5448 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-sup 8952 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 |
This theorem is referenced by: supxrre 12774 supxrss 12779 ixxub 12813 prdsdsf 23082 prdsxmetlem 23083 xpsdsval 23096 prdsbl 23206 xrge0tsms 23548 bndth 23672 ovolmge0 24190 ovollb2lem 24201 ovolunlem1a 24209 ovoliunlem1 24215 ovoliun 24218 ovolicc2lem4 24233 ioombl1lem2 24272 ioombl1lem4 24274 uniioombllem2 24296 uniioombllem3 24298 uniioombllem6 24301 vitalilem4 24324 itg2ub 24446 itg2seq 24455 itg2monolem1 24463 itg2monolem2 24464 itg2monolem3 24465 aannenlem2 25037 radcnvcl 25124 radcnvle 25127 nmooge0 28662 nmoolb 28666 nmlno0lem 28688 nmoplb 29802 nmfnlb 29819 nmlnop0iALT 29890 xrofsup 30626 xrge0tsmsd 30855 itg2addnc 35425 rrnequiv 35587 supxrubd 42157 supxrgere 42368 supxrgelem 42372 suplesup2 42411 ressiocsup 42592 ressioosup 42593 liminfval2 42811 etransclem48 43325 fsumlesge0 43417 sge0cl 43421 sge0supre 43429 sge0xaddlem1 43473 sge0xaddlem2 43474 |
Copyright terms: Public domain | W3C validator |