![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supxrub | Structured version Visualization version GIF version |
Description: A member of a set of extended reals is less than or equal to the set's supremum. (Contributed by NM, 7-Feb-2006.) |
Ref | Expression |
---|---|
supxrub | ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel2 3977 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
2 | supxrcl 13298 | . . 3 ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) | |
3 | 2 | adantr 481 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
4 | xrltso 13124 | . . . . 5 ⊢ < Or ℝ* | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → < Or ℝ*) |
6 | xrsupss 13292 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
7 | 5, 6 | supub 9456 | . . 3 ⊢ (𝐴 ⊆ ℝ* → (𝐵 ∈ 𝐴 → ¬ sup(𝐴, ℝ*, < ) < 𝐵)) |
8 | 7 | imp 407 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → ¬ sup(𝐴, ℝ*, < ) < 𝐵) |
9 | 1, 3, 8 | xrnltled 11286 | 1 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∈ wcel 2106 ⊆ wss 3948 class class class wbr 5148 Or wor 5587 supcsup 9437 ℝ*cxr 11251 < clt 11252 ≤ cle 11253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 |
This theorem is referenced by: supxrre 13310 supxrss 13315 ixxub 13349 prdsdsf 24093 prdsxmetlem 24094 xpsdsval 24107 prdsbl 24220 xrge0tsms 24570 bndth 24698 ovolmge0 25218 ovollb2lem 25229 ovolunlem1a 25237 ovoliunlem1 25243 ovoliun 25246 ovolicc2lem4 25261 ioombl1lem2 25300 ioombl1lem4 25302 uniioombllem2 25324 uniioombllem3 25326 uniioombllem6 25329 vitalilem4 25352 itg2ub 25475 itg2seq 25484 itg2monolem1 25492 itg2monolem2 25493 itg2monolem3 25494 aannenlem2 26066 radcnvcl 26153 radcnvle 26156 nmooge0 30275 nmoolb 30279 nmlno0lem 30301 nmoplb 31415 nmfnlb 31432 nmlnop0iALT 31503 xrofsup 32235 xrge0tsmsd 32467 itg2addnc 36845 rrnequiv 37006 supxrubd 44104 supxrgere 44342 supxrgelem 44346 suplesup2 44385 ressiocsup 44566 ressioosup 44567 liminfval2 44783 etransclem48 45297 fsumlesge0 45392 sge0cl 45396 sge0supre 45404 sge0xaddlem1 45448 sge0xaddlem2 45449 |
Copyright terms: Public domain | W3C validator |