| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supxrub | Structured version Visualization version GIF version | ||
| Description: A member of a set of extended reals is less than or equal to the set's supremum. (Contributed by NM, 7-Feb-2006.) |
| Ref | Expression |
|---|---|
| supxrub | ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel2 3941 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
| 2 | supxrcl 13275 | . . 3 ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
| 4 | xrltso 13101 | . . . . 5 ⊢ < Or ℝ* | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → < Or ℝ*) |
| 6 | xrsupss 13269 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
| 7 | 5, 6 | supub 9410 | . . 3 ⊢ (𝐴 ⊆ ℝ* → (𝐵 ∈ 𝐴 → ¬ sup(𝐴, ℝ*, < ) < 𝐵)) |
| 8 | 7 | imp 406 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → ¬ sup(𝐴, ℝ*, < ) < 𝐵) |
| 9 | 1, 3, 8 | xrnltled 11242 | 1 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3914 class class class wbr 5107 Or wor 5545 supcsup 9391 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 |
| This theorem is referenced by: supxrre 13287 supxrss 13292 ixxub 13327 prdsdsf 24255 prdsxmetlem 24256 xpsdsval 24269 prdsbl 24379 xrge0tsms 24723 bndth 24857 ovolmge0 25378 ovollb2lem 25389 ovolunlem1a 25397 ovoliunlem1 25403 ovoliun 25406 ovolicc2lem4 25421 ioombl1lem2 25460 ioombl1lem4 25462 uniioombllem2 25484 uniioombllem3 25486 uniioombllem6 25489 vitalilem4 25512 itg2ub 25634 itg2seq 25643 itg2monolem1 25651 itg2monolem2 25652 itg2monolem3 25653 aannenlem2 26237 radcnvcl 26326 radcnvle 26329 nmooge0 30696 nmoolb 30700 nmlno0lem 30722 nmoplb 31836 nmfnlb 31853 nmlnop0iALT 31924 xrofsup 32690 xrge0tsmsd 33002 itg2addnc 37668 rrnequiv 37829 supxrubd 45107 supxrgere 45329 supxrgelem 45333 suplesup2 45372 ressiocsup 45552 ressioosup 45553 liminfval2 45766 etransclem48 46280 fsumlesge0 46375 sge0cl 46379 sge0supre 46387 sge0xaddlem1 46431 sge0xaddlem2 46432 |
| Copyright terms: Public domain | W3C validator |