![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supxrub | Structured version Visualization version GIF version |
Description: A member of a set of extended reals is less than or equal to the set's supremum. (Contributed by NM, 7-Feb-2006.) |
Ref | Expression |
---|---|
supxrub | ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltso 12221 | . . . . 5 ⊢ < Or ℝ* | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → < Or ℝ*) |
3 | xrsupss 12388 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
4 | 2, 3 | supub 8607 | . . 3 ⊢ (𝐴 ⊆ ℝ* → (𝐵 ∈ 𝐴 → ¬ sup(𝐴, ℝ*, < ) < 𝐵)) |
5 | 4 | imp 396 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → ¬ sup(𝐴, ℝ*, < ) < 𝐵) |
6 | ssel2 3793 | . . 3 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
7 | supxrcl 12394 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) | |
8 | 7 | adantr 473 | . . 3 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
9 | xrlenlt 10393 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ sup(𝐴, ℝ*, < ) ∈ ℝ*) → (𝐵 ≤ sup(𝐴, ℝ*, < ) ↔ ¬ sup(𝐴, ℝ*, < ) < 𝐵)) | |
10 | 6, 8, 9 | syl2anc 580 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → (𝐵 ≤ sup(𝐴, ℝ*, < ) ↔ ¬ sup(𝐴, ℝ*, < ) < 𝐵)) |
11 | 5, 10 | mpbird 249 | 1 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 ∈ wcel 2157 ⊆ wss 3769 class class class wbr 4843 Or wor 5232 supcsup 8588 ℝ*cxr 10362 < clt 10363 ≤ cle 10364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-po 5233 df-so 5234 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-sup 8590 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 |
This theorem is referenced by: supxrre 12406 supxrss 12411 ixxub 12445 prdsdsf 22500 prdsxmetlem 22501 xpsdsval 22514 prdsbl 22624 xrge0tsms 22965 bndth 23085 ovolmge0 23585 ovollb2lem 23596 ovolunlem1a 23604 ovoliunlem1 23610 ovoliun 23613 ovolicc2lem4 23628 ioombl1lem2 23667 ioombl1lem4 23669 uniioombllem2 23691 uniioombllem3 23693 uniioombllem6 23696 vitalilem4 23719 itg2ub 23841 itg2seq 23850 itg2monolem1 23858 itg2monolem2 23859 itg2monolem3 23860 aannenlem2 24425 radcnvcl 24512 radcnvle 24515 nmooge0 28147 nmoolb 28151 nmlno0lem 28173 nmoplb 29291 nmfnlb 29308 nmlnop0iALT 29379 xrofsup 30051 xrge0tsmsd 30301 itg2addnc 33952 rrnequiv 34121 supxrubd 40055 supxrgere 40293 supxrgelem 40297 suplesup2 40336 ressiocsup 40525 ressioosup 40526 liminfval2 40744 etransclem48 41242 fsumlesge0 41337 sge0cl 41341 sge0supre 41349 sge0xaddlem1 41393 sge0xaddlem2 41394 |
Copyright terms: Public domain | W3C validator |