MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrub Structured version   Visualization version   GIF version

Theorem supxrub 13220
Description: A member of a set of extended reals is less than or equal to the set's supremum. (Contributed by NM, 7-Feb-2006.)
Assertion
Ref Expression
supxrub ((𝐴 ⊆ ℝ*𝐵𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < ))

Proof of Theorem supxrub
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel2 3929 . 2 ((𝐴 ⊆ ℝ*𝐵𝐴) → 𝐵 ∈ ℝ*)
2 supxrcl 13211 . . 3 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
32adantr 480 . 2 ((𝐴 ⊆ ℝ*𝐵𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
4 xrltso 13037 . . . . 5 < Or ℝ*
54a1i 11 . . . 4 (𝐴 ⊆ ℝ* → < Or ℝ*)
6 xrsupss 13205 . . . 4 (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
75, 6supub 9343 . . 3 (𝐴 ⊆ ℝ* → (𝐵𝐴 → ¬ sup(𝐴, ℝ*, < ) < 𝐵))
87imp 406 . 2 ((𝐴 ⊆ ℝ*𝐵𝐴) → ¬ sup(𝐴, ℝ*, < ) < 𝐵)
91, 3, 8xrnltled 11178 1 ((𝐴 ⊆ ℝ*𝐵𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2111  wss 3902   class class class wbr 5091   Or wor 5523  supcsup 9324  *cxr 11142   < clt 11143  cle 11144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344
This theorem is referenced by:  supxrre  13223  supxrss  13228  ixxub  13263  prdsdsf  24280  prdsxmetlem  24281  xpsdsval  24294  prdsbl  24404  xrge0tsms  24748  bndth  24882  ovolmge0  25403  ovollb2lem  25414  ovolunlem1a  25422  ovoliunlem1  25428  ovoliun  25431  ovolicc2lem4  25446  ioombl1lem2  25485  ioombl1lem4  25487  uniioombllem2  25509  uniioombllem3  25511  uniioombllem6  25514  vitalilem4  25537  itg2ub  25659  itg2seq  25668  itg2monolem1  25676  itg2monolem2  25677  itg2monolem3  25678  aannenlem2  26262  radcnvcl  26351  radcnvle  26354  nmooge0  30742  nmoolb  30746  nmlno0lem  30768  nmoplb  31882  nmfnlb  31899  nmlnop0iALT  31970  xrofsup  32745  xrge0tsmsd  33037  itg2addnc  37713  rrnequiv  37874  supxrubd  45149  supxrgere  45371  supxrgelem  45375  suplesup2  45413  ressiocsup  45593  ressioosup  45594  liminfval2  45805  etransclem48  46319  fsumlesge0  46414  sge0cl  46418  sge0supre  46426  sge0xaddlem1  46470  sge0xaddlem2  46471
  Copyright terms: Public domain W3C validator