MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrub Structured version   Visualization version   GIF version

Theorem supxrub 13244
Description: A member of a set of extended reals is less than or equal to the set's supremum. (Contributed by NM, 7-Feb-2006.)
Assertion
Ref Expression
supxrub ((𝐴 ⊆ ℝ*𝐵𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < ))

Proof of Theorem supxrub
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel2 3932 . 2 ((𝐴 ⊆ ℝ*𝐵𝐴) → 𝐵 ∈ ℝ*)
2 supxrcl 13235 . . 3 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
32adantr 480 . 2 ((𝐴 ⊆ ℝ*𝐵𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
4 xrltso 13061 . . . . 5 < Or ℝ*
54a1i 11 . . . 4 (𝐴 ⊆ ℝ* → < Or ℝ*)
6 xrsupss 13229 . . . 4 (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
75, 6supub 9368 . . 3 (𝐴 ⊆ ℝ* → (𝐵𝐴 → ¬ sup(𝐴, ℝ*, < ) < 𝐵))
87imp 406 . 2 ((𝐴 ⊆ ℝ*𝐵𝐴) → ¬ sup(𝐴, ℝ*, < ) < 𝐵)
91, 3, 8xrnltled 11202 1 ((𝐴 ⊆ ℝ*𝐵𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  wss 3905   class class class wbr 5095   Or wor 5530  supcsup 9349  *cxr 11167   < clt 11168  cle 11169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368
This theorem is referenced by:  supxrre  13247  supxrss  13252  ixxub  13287  prdsdsf  24271  prdsxmetlem  24272  xpsdsval  24285  prdsbl  24395  xrge0tsms  24739  bndth  24873  ovolmge0  25394  ovollb2lem  25405  ovolunlem1a  25413  ovoliunlem1  25419  ovoliun  25422  ovolicc2lem4  25437  ioombl1lem2  25476  ioombl1lem4  25478  uniioombllem2  25500  uniioombllem3  25502  uniioombllem6  25505  vitalilem4  25528  itg2ub  25650  itg2seq  25659  itg2monolem1  25667  itg2monolem2  25668  itg2monolem3  25669  aannenlem2  26253  radcnvcl  26342  radcnvle  26345  nmooge0  30729  nmoolb  30733  nmlno0lem  30755  nmoplb  31869  nmfnlb  31886  nmlnop0iALT  31957  xrofsup  32723  xrge0tsmsd  33028  itg2addnc  37653  rrnequiv  37814  supxrubd  45091  supxrgere  45313  supxrgelem  45317  suplesup2  45356  ressiocsup  45536  ressioosup  45537  liminfval2  45750  etransclem48  46264  fsumlesge0  46359  sge0cl  46363  sge0supre  46371  sge0xaddlem1  46415  sge0xaddlem2  46416
  Copyright terms: Public domain W3C validator