MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrub Structured version   Visualization version   GIF version

Theorem supxrub 13345
Description: A member of a set of extended reals is less than or equal to the set's supremum. (Contributed by NM, 7-Feb-2006.)
Assertion
Ref Expression
supxrub ((𝐴 ⊆ ℝ*𝐵𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < ))

Proof of Theorem supxrub
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel2 3958 . 2 ((𝐴 ⊆ ℝ*𝐵𝐴) → 𝐵 ∈ ℝ*)
2 supxrcl 13336 . . 3 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
32adantr 480 . 2 ((𝐴 ⊆ ℝ*𝐵𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
4 xrltso 13162 . . . . 5 < Or ℝ*
54a1i 11 . . . 4 (𝐴 ⊆ ℝ* → < Or ℝ*)
6 xrsupss 13330 . . . 4 (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
75, 6supub 9476 . . 3 (𝐴 ⊆ ℝ* → (𝐵𝐴 → ¬ sup(𝐴, ℝ*, < ) < 𝐵))
87imp 406 . 2 ((𝐴 ⊆ ℝ*𝐵𝐴) → ¬ sup(𝐴, ℝ*, < ) < 𝐵)
91, 3, 8xrnltled 11308 1 ((𝐴 ⊆ ℝ*𝐵𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  wss 3931   class class class wbr 5124   Or wor 5565  supcsup 9457  *cxr 11273   < clt 11274  cle 11275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474
This theorem is referenced by:  supxrre  13348  supxrss  13353  ixxub  13388  prdsdsf  24311  prdsxmetlem  24312  xpsdsval  24325  prdsbl  24435  xrge0tsms  24779  bndth  24913  ovolmge0  25435  ovollb2lem  25446  ovolunlem1a  25454  ovoliunlem1  25460  ovoliun  25463  ovolicc2lem4  25478  ioombl1lem2  25517  ioombl1lem4  25519  uniioombllem2  25541  uniioombllem3  25543  uniioombllem6  25546  vitalilem4  25569  itg2ub  25691  itg2seq  25700  itg2monolem1  25708  itg2monolem2  25709  itg2monolem3  25710  aannenlem2  26294  radcnvcl  26383  radcnvle  26386  nmooge0  30753  nmoolb  30757  nmlno0lem  30779  nmoplb  31893  nmfnlb  31910  nmlnop0iALT  31981  xrofsup  32749  xrge0tsmsd  33061  itg2addnc  37703  rrnequiv  37864  supxrubd  45117  supxrgere  45340  supxrgelem  45344  suplesup2  45383  ressiocsup  45563  ressioosup  45564  liminfval2  45777  etransclem48  46291  fsumlesge0  46386  sge0cl  46390  sge0supre  46398  sge0xaddlem1  46442  sge0xaddlem2  46443
  Copyright terms: Public domain W3C validator