| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supxrub | Structured version Visualization version GIF version | ||
| Description: A member of a set of extended reals is less than or equal to the set's supremum. (Contributed by NM, 7-Feb-2006.) |
| Ref | Expression |
|---|---|
| supxrub | ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel2 3932 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
| 2 | supxrcl 13235 | . . 3 ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*) |
| 4 | xrltso 13061 | . . . . 5 ⊢ < Or ℝ* | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → < Or ℝ*) |
| 6 | xrsupss 13229 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
| 7 | 5, 6 | supub 9368 | . . 3 ⊢ (𝐴 ⊆ ℝ* → (𝐵 ∈ 𝐴 → ¬ sup(𝐴, ℝ*, < ) < 𝐵)) |
| 8 | 7 | imp 406 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → ¬ sup(𝐴, ℝ*, < ) < 𝐵) |
| 9 | 1, 3, 8 | xrnltled 11202 | 1 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3905 class class class wbr 5095 Or wor 5530 supcsup 9349 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 |
| This theorem is referenced by: supxrre 13247 supxrss 13252 ixxub 13287 prdsdsf 24271 prdsxmetlem 24272 xpsdsval 24285 prdsbl 24395 xrge0tsms 24739 bndth 24873 ovolmge0 25394 ovollb2lem 25405 ovolunlem1a 25413 ovoliunlem1 25419 ovoliun 25422 ovolicc2lem4 25437 ioombl1lem2 25476 ioombl1lem4 25478 uniioombllem2 25500 uniioombllem3 25502 uniioombllem6 25505 vitalilem4 25528 itg2ub 25650 itg2seq 25659 itg2monolem1 25667 itg2monolem2 25668 itg2monolem3 25669 aannenlem2 26253 radcnvcl 26342 radcnvle 26345 nmooge0 30729 nmoolb 30733 nmlno0lem 30755 nmoplb 31869 nmfnlb 31886 nmlnop0iALT 31957 xrofsup 32723 xrge0tsmsd 33028 itg2addnc 37653 rrnequiv 37814 supxrubd 45091 supxrgere 45313 supxrgelem 45317 suplesup2 45356 ressiocsup 45536 ressioosup 45537 liminfval2 45750 etransclem48 46264 fsumlesge0 46359 sge0cl 46363 sge0supre 46371 sge0xaddlem1 46415 sge0xaddlem2 46416 |
| Copyright terms: Public domain | W3C validator |