MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrub Structured version   Visualization version   GIF version

Theorem supxrub 12987
Description: A member of a set of extended reals is less than or equal to the set's supremum. (Contributed by NM, 7-Feb-2006.)
Assertion
Ref Expression
supxrub ((𝐴 ⊆ ℝ*𝐵𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < ))

Proof of Theorem supxrub
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel2 3912 . 2 ((𝐴 ⊆ ℝ*𝐵𝐴) → 𝐵 ∈ ℝ*)
2 supxrcl 12978 . . 3 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
32adantr 480 . 2 ((𝐴 ⊆ ℝ*𝐵𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
4 xrltso 12804 . . . . 5 < Or ℝ*
54a1i 11 . . . 4 (𝐴 ⊆ ℝ* → < Or ℝ*)
6 xrsupss 12972 . . . 4 (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
75, 6supub 9148 . . 3 (𝐴 ⊆ ℝ* → (𝐵𝐴 → ¬ sup(𝐴, ℝ*, < ) < 𝐵))
87imp 406 . 2 ((𝐴 ⊆ ℝ*𝐵𝐴) → ¬ sup(𝐴, ℝ*, < ) < 𝐵)
91, 3, 8xrnltled 10974 1 ((𝐴 ⊆ ℝ*𝐵𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108  wss 3883   class class class wbr 5070   Or wor 5493  supcsup 9129  *cxr 10939   < clt 10940  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138
This theorem is referenced by:  supxrre  12990  supxrss  12995  ixxub  13029  prdsdsf  23428  prdsxmetlem  23429  xpsdsval  23442  prdsbl  23553  xrge0tsms  23903  bndth  24027  ovolmge0  24546  ovollb2lem  24557  ovolunlem1a  24565  ovoliunlem1  24571  ovoliun  24574  ovolicc2lem4  24589  ioombl1lem2  24628  ioombl1lem4  24630  uniioombllem2  24652  uniioombllem3  24654  uniioombllem6  24657  vitalilem4  24680  itg2ub  24803  itg2seq  24812  itg2monolem1  24820  itg2monolem2  24821  itg2monolem3  24822  aannenlem2  25394  radcnvcl  25481  radcnvle  25484  nmooge0  29030  nmoolb  29034  nmlno0lem  29056  nmoplb  30170  nmfnlb  30187  nmlnop0iALT  30258  xrofsup  30992  xrge0tsmsd  31219  itg2addnc  35758  rrnequiv  35920  supxrubd  42552  supxrgere  42762  supxrgelem  42766  suplesup2  42805  ressiocsup  42982  ressioosup  42983  liminfval2  43199  etransclem48  43713  fsumlesge0  43805  sge0cl  43809  sge0supre  43817  sge0xaddlem1  43861  sge0xaddlem2  43862
  Copyright terms: Public domain W3C validator