Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > infxrge0lb | Structured version Visualization version GIF version |
Description: A member of a set of nonnegative extended reals is greater than or equal to the set's infimum. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.) |
Ref | Expression |
---|---|
infxrge0lb.a | ⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) |
infxrge0lb.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
Ref | Expression |
---|---|
infxrge0lb | ⊢ (𝜑 → inf(𝐴, (0[,]+∞), < ) ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 13162 | . . 3 ⊢ (0[,]+∞) ⊆ ℝ* | |
2 | xrltso 12875 | . . . . . 6 ⊢ < Or ℝ* | |
3 | soss 5523 | . . . . . 6 ⊢ ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞))) | |
4 | 1, 2, 3 | mp2 9 | . . . . 5 ⊢ < Or (0[,]+∞) |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → < Or (0[,]+∞)) |
6 | infxrge0lb.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) | |
7 | xrge0infss 31083 | . . . . 5 ⊢ (𝐴 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
9 | 5, 8 | infcl 9247 | . . 3 ⊢ (𝜑 → inf(𝐴, (0[,]+∞), < ) ∈ (0[,]+∞)) |
10 | 1, 9 | sselid 3919 | . 2 ⊢ (𝜑 → inf(𝐴, (0[,]+∞), < ) ∈ ℝ*) |
11 | infxrge0lb.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
12 | 6, 11 | sseldd 3922 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) |
13 | 1, 12 | sselid 3919 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
14 | 5, 8 | inflb 9248 | . . 3 ⊢ (𝜑 → (𝐵 ∈ 𝐴 → ¬ 𝐵 < inf(𝐴, (0[,]+∞), < ))) |
15 | 11, 14 | mpd 15 | . 2 ⊢ (𝜑 → ¬ 𝐵 < inf(𝐴, (0[,]+∞), < )) |
16 | 10, 13, 15 | xrnltled 11043 | 1 ⊢ (𝜑 → inf(𝐴, (0[,]+∞), < ) ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 class class class wbr 5074 Or wor 5502 (class class class)co 7275 infcinf 9200 0cc0 10871 +∞cpnf 11006 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 [,]cicc 13082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-icc 13086 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |