MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnvle Structured version   Visualization version   GIF version

Theorem radcnvle 25179
Description: If 𝑋 is a convergent point of the infinite series, then 𝑋 is within the closed disk of radius 𝑅 centered at zero. Or, by contraposition, the series diverges at any point strictly more than 𝑅 from the origin. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnv.a (𝜑𝐴:ℕ0⟶ℂ)
radcnv.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
radcnvle.x (𝜑𝑋 ∈ ℂ)
radcnvle.a (𝜑 → seq0( + , (𝐺𝑋)) ∈ dom ⇝ )
Assertion
Ref Expression
radcnvle (𝜑 → (abs‘𝑋) ≤ 𝑅)
Distinct variable groups:   𝑥,𝑛,𝐴   𝐺,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑟)   𝑅(𝑥,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝑋(𝑥,𝑛,𝑟)

Proof of Theorem radcnvle
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ressxr 10775 . . 3 ℝ ⊆ ℝ*
2 radcnvle.x . . . 4 (𝜑𝑋 ∈ ℂ)
32abscld 14898 . . 3 (𝜑 → (abs‘𝑋) ∈ ℝ)
41, 3sseldi 3885 . 2 (𝜑 → (abs‘𝑋) ∈ ℝ*)
5 iccssxr 12916 . . 3 (0[,]+∞) ⊆ ℝ*
6 pser.g . . . 4 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
7 radcnv.a . . . 4 (𝜑𝐴:ℕ0⟶ℂ)
8 radcnv.r . . . 4 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
96, 7, 8radcnvcl 25176 . . 3 (𝜑𝑅 ∈ (0[,]+∞))
105, 9sseldi 3885 . 2 (𝜑𝑅 ∈ ℝ*)
11 simpr 488 . . . 4 ((𝜑𝑅 < (abs‘𝑋)) → 𝑅 < (abs‘𝑋))
1210adantr 484 . . . . . 6 ((𝜑𝑅 < (abs‘𝑋)) → 𝑅 ∈ ℝ*)
133adantr 484 . . . . . 6 ((𝜑𝑅 < (abs‘𝑋)) → (abs‘𝑋) ∈ ℝ)
14 0xr 10778 . . . . . . . . . . 11 0 ∈ ℝ*
15 pnfxr 10785 . . . . . . . . . . 11 +∞ ∈ ℝ*
16 elicc1 12877 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞)))
1714, 15, 16mp2an 692 . . . . . . . . . 10 (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞))
189, 17sylib 221 . . . . . . . . 9 (𝜑 → (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞))
1918simp2d 1144 . . . . . . . 8 (𝜑 → 0 ≤ 𝑅)
20 ge0gtmnf 12660 . . . . . . . 8 ((𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅) → -∞ < 𝑅)
2110, 19, 20syl2anc 587 . . . . . . 7 (𝜑 → -∞ < 𝑅)
2221adantr 484 . . . . . 6 ((𝜑𝑅 < (abs‘𝑋)) → -∞ < 𝑅)
234adantr 484 . . . . . . 7 ((𝜑𝑅 < (abs‘𝑋)) → (abs‘𝑋) ∈ ℝ*)
2412, 23, 11xrltled 12638 . . . . . 6 ((𝜑𝑅 < (abs‘𝑋)) → 𝑅 ≤ (abs‘𝑋))
25 xrre 12657 . . . . . 6 (((𝑅 ∈ ℝ* ∧ (abs‘𝑋) ∈ ℝ) ∧ (-∞ < 𝑅𝑅 ≤ (abs‘𝑋))) → 𝑅 ∈ ℝ)
2612, 13, 22, 24, 25syl22anc 838 . . . . 5 ((𝜑𝑅 < (abs‘𝑋)) → 𝑅 ∈ ℝ)
27 avglt1 11966 . . . . 5 ((𝑅 ∈ ℝ ∧ (abs‘𝑋) ∈ ℝ) → (𝑅 < (abs‘𝑋) ↔ 𝑅 < ((𝑅 + (abs‘𝑋)) / 2)))
2826, 13, 27syl2anc 587 . . . 4 ((𝜑𝑅 < (abs‘𝑋)) → (𝑅 < (abs‘𝑋) ↔ 𝑅 < ((𝑅 + (abs‘𝑋)) / 2)))
2911, 28mpbid 235 . . 3 ((𝜑𝑅 < (abs‘𝑋)) → 𝑅 < ((𝑅 + (abs‘𝑋)) / 2))
3026, 13readdcld 10760 . . . . 5 ((𝜑𝑅 < (abs‘𝑋)) → (𝑅 + (abs‘𝑋)) ∈ ℝ)
3130rehalfcld 11975 . . . 4 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) ∈ ℝ)
32 ssrab2 3979 . . . . . . 7 {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ⊆ ℝ
3332, 1sstri 3896 . . . . . 6 {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ⊆ ℝ*
347adantr 484 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → 𝐴:ℕ0⟶ℂ)
3531recnd 10759 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) ∈ ℂ)
362adantr 484 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → 𝑋 ∈ ℂ)
37 0red 10734 . . . . . . . . . . 11 ((𝜑𝑅 < (abs‘𝑋)) → 0 ∈ ℝ)
3819adantr 484 . . . . . . . . . . . 12 ((𝜑𝑅 < (abs‘𝑋)) → 0 ≤ 𝑅)
3937, 26, 31, 38, 29lelttrd 10888 . . . . . . . . . . 11 ((𝜑𝑅 < (abs‘𝑋)) → 0 < ((𝑅 + (abs‘𝑋)) / 2))
4037, 31, 39ltled 10878 . . . . . . . . . 10 ((𝜑𝑅 < (abs‘𝑋)) → 0 ≤ ((𝑅 + (abs‘𝑋)) / 2))
4131, 40absidd 14884 . . . . . . . . 9 ((𝜑𝑅 < (abs‘𝑋)) → (abs‘((𝑅 + (abs‘𝑋)) / 2)) = ((𝑅 + (abs‘𝑋)) / 2))
42 avglt2 11967 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ (abs‘𝑋) ∈ ℝ) → (𝑅 < (abs‘𝑋) ↔ ((𝑅 + (abs‘𝑋)) / 2) < (abs‘𝑋)))
4326, 13, 42syl2anc 587 . . . . . . . . . 10 ((𝜑𝑅 < (abs‘𝑋)) → (𝑅 < (abs‘𝑋) ↔ ((𝑅 + (abs‘𝑋)) / 2) < (abs‘𝑋)))
4411, 43mpbid 235 . . . . . . . . 9 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) < (abs‘𝑋))
4541, 44eqbrtrd 5062 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → (abs‘((𝑅 + (abs‘𝑋)) / 2)) < (abs‘𝑋))
46 radcnvle.a . . . . . . . . 9 (𝜑 → seq0( + , (𝐺𝑋)) ∈ dom ⇝ )
4746adantr 484 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → seq0( + , (𝐺𝑋)) ∈ dom ⇝ )
486, 34, 35, 36, 45, 47radcnvlem3 25174 . . . . . . 7 ((𝜑𝑅 < (abs‘𝑋)) → seq0( + , (𝐺‘((𝑅 + (abs‘𝑋)) / 2))) ∈ dom ⇝ )
49 fveq2 6686 . . . . . . . . . 10 (𝑦 = ((𝑅 + (abs‘𝑋)) / 2) → (𝐺𝑦) = (𝐺‘((𝑅 + (abs‘𝑋)) / 2)))
5049seqeq3d 13480 . . . . . . . . 9 (𝑦 = ((𝑅 + (abs‘𝑋)) / 2) → seq0( + , (𝐺𝑦)) = seq0( + , (𝐺‘((𝑅 + (abs‘𝑋)) / 2))))
5150eleq1d 2818 . . . . . . . 8 (𝑦 = ((𝑅 + (abs‘𝑋)) / 2) → (seq0( + , (𝐺𝑦)) ∈ dom ⇝ ↔ seq0( + , (𝐺‘((𝑅 + (abs‘𝑋)) / 2))) ∈ dom ⇝ ))
52 fveq2 6686 . . . . . . . . . . 11 (𝑟 = 𝑦 → (𝐺𝑟) = (𝐺𝑦))
5352seqeq3d 13480 . . . . . . . . . 10 (𝑟 = 𝑦 → seq0( + , (𝐺𝑟)) = seq0( + , (𝐺𝑦)))
5453eleq1d 2818 . . . . . . . . 9 (𝑟 = 𝑦 → (seq0( + , (𝐺𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺𝑦)) ∈ dom ⇝ ))
5554cbvrabv 3394 . . . . . . . 8 {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } = {𝑦 ∈ ℝ ∣ seq0( + , (𝐺𝑦)) ∈ dom ⇝ }
5651, 55elrab2 3596 . . . . . . 7 (((𝑅 + (abs‘𝑋)) / 2) ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ (((𝑅 + (abs‘𝑋)) / 2) ∈ ℝ ∧ seq0( + , (𝐺‘((𝑅 + (abs‘𝑋)) / 2))) ∈ dom ⇝ ))
5731, 48, 56sylanbrc 586 . . . . . 6 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
58 supxrub 12812 . . . . . 6 (({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ⊆ ℝ* ∧ ((𝑅 + (abs‘𝑋)) / 2) ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }) → ((𝑅 + (abs‘𝑋)) / 2) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ))
5933, 57, 58sylancr 590 . . . . 5 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ))
6059, 8breqtrrdi 5082 . . . 4 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) ≤ 𝑅)
6131, 26, 60lensymd 10881 . . 3 ((𝜑𝑅 < (abs‘𝑋)) → ¬ 𝑅 < ((𝑅 + (abs‘𝑋)) / 2))
6229, 61pm2.65da 817 . 2 (𝜑 → ¬ 𝑅 < (abs‘𝑋))
634, 10, 62xrnltled 10799 1 (𝜑 → (abs‘𝑋) ≤ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  {crab 3058  wss 3853   class class class wbr 5040  cmpt 5120  dom cdm 5535  wf 6345  cfv 6349  (class class class)co 7182  supcsup 8989  cc 10625  cr 10626  0cc0 10627   + caddc 10630   · cmul 10632  +∞cpnf 10762  -∞cmnf 10763  *cxr 10764   < clt 10765  cle 10766   / cdiv 11387  2c2 11783  0cn0 11988  [,]cicc 12836  seqcseq 13472  cexp 13533  abscabs 14695  cli 14943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-inf2 9189  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704  ax-pre-sup 10705
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-se 5494  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-om 7612  df-1st 7726  df-2nd 7727  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-1o 8143  df-er 8332  df-pm 8452  df-en 8568  df-dom 8569  df-sdom 8570  df-fin 8571  df-sup 8991  df-inf 8992  df-oi 9059  df-card 9453  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-div 11388  df-nn 11729  df-2 11791  df-3 11792  df-n0 11989  df-z 12075  df-uz 12337  df-rp 12485  df-ico 12839  df-icc 12840  df-fz 12994  df-fzo 13137  df-fl 13265  df-seq 13473  df-exp 13534  df-hash 13795  df-cj 14560  df-re 14561  df-im 14562  df-sqrt 14696  df-abs 14697  df-limsup 14930  df-clim 14947  df-rlim 14948  df-sum 15148
This theorem is referenced by:  pserdvlem2  25187  abelthlem1  25190  logtayl  25415
  Copyright terms: Public domain W3C validator