MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnvle Structured version   Visualization version   GIF version

Theorem radcnvle 26356
Description: If 𝑋 is a convergent point of the infinite series, then 𝑋 is within the closed disk of radius 𝑅 centered at zero. Or, by contraposition, the series diverges at any point strictly more than 𝑅 from the origin. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnv.a (𝜑𝐴:ℕ0⟶ℂ)
radcnv.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
radcnvle.x (𝜑𝑋 ∈ ℂ)
radcnvle.a (𝜑 → seq0( + , (𝐺𝑋)) ∈ dom ⇝ )
Assertion
Ref Expression
radcnvle (𝜑 → (abs‘𝑋) ≤ 𝑅)
Distinct variable groups:   𝑥,𝑛,𝐴   𝐺,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑟)   𝑅(𝑥,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝑋(𝑥,𝑛,𝑟)

Proof of Theorem radcnvle
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ressxr 11156 . . 3 ℝ ⊆ ℝ*
2 radcnvle.x . . . 4 (𝜑𝑋 ∈ ℂ)
32abscld 15346 . . 3 (𝜑 → (abs‘𝑋) ∈ ℝ)
41, 3sselid 3927 . 2 (𝜑 → (abs‘𝑋) ∈ ℝ*)
5 iccssxr 13330 . . 3 (0[,]+∞) ⊆ ℝ*
6 pser.g . . . 4 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
7 radcnv.a . . . 4 (𝜑𝐴:ℕ0⟶ℂ)
8 radcnv.r . . . 4 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
96, 7, 8radcnvcl 26353 . . 3 (𝜑𝑅 ∈ (0[,]+∞))
105, 9sselid 3927 . 2 (𝜑𝑅 ∈ ℝ*)
11 simpr 484 . . . 4 ((𝜑𝑅 < (abs‘𝑋)) → 𝑅 < (abs‘𝑋))
1210adantr 480 . . . . . 6 ((𝜑𝑅 < (abs‘𝑋)) → 𝑅 ∈ ℝ*)
133adantr 480 . . . . . 6 ((𝜑𝑅 < (abs‘𝑋)) → (abs‘𝑋) ∈ ℝ)
14 0xr 11159 . . . . . . . . . . 11 0 ∈ ℝ*
15 pnfxr 11166 . . . . . . . . . . 11 +∞ ∈ ℝ*
16 elicc1 13289 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞)))
1714, 15, 16mp2an 692 . . . . . . . . . 10 (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞))
189, 17sylib 218 . . . . . . . . 9 (𝜑 → (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞))
1918simp2d 1143 . . . . . . . 8 (𝜑 → 0 ≤ 𝑅)
20 ge0gtmnf 13071 . . . . . . . 8 ((𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅) → -∞ < 𝑅)
2110, 19, 20syl2anc 584 . . . . . . 7 (𝜑 → -∞ < 𝑅)
2221adantr 480 . . . . . 6 ((𝜑𝑅 < (abs‘𝑋)) → -∞ < 𝑅)
234adantr 480 . . . . . . 7 ((𝜑𝑅 < (abs‘𝑋)) → (abs‘𝑋) ∈ ℝ*)
2412, 23, 11xrltled 13049 . . . . . 6 ((𝜑𝑅 < (abs‘𝑋)) → 𝑅 ≤ (abs‘𝑋))
25 xrre 13068 . . . . . 6 (((𝑅 ∈ ℝ* ∧ (abs‘𝑋) ∈ ℝ) ∧ (-∞ < 𝑅𝑅 ≤ (abs‘𝑋))) → 𝑅 ∈ ℝ)
2612, 13, 22, 24, 25syl22anc 838 . . . . 5 ((𝜑𝑅 < (abs‘𝑋)) → 𝑅 ∈ ℝ)
27 avglt1 12359 . . . . 5 ((𝑅 ∈ ℝ ∧ (abs‘𝑋) ∈ ℝ) → (𝑅 < (abs‘𝑋) ↔ 𝑅 < ((𝑅 + (abs‘𝑋)) / 2)))
2826, 13, 27syl2anc 584 . . . 4 ((𝜑𝑅 < (abs‘𝑋)) → (𝑅 < (abs‘𝑋) ↔ 𝑅 < ((𝑅 + (abs‘𝑋)) / 2)))
2911, 28mpbid 232 . . 3 ((𝜑𝑅 < (abs‘𝑋)) → 𝑅 < ((𝑅 + (abs‘𝑋)) / 2))
3026, 13readdcld 11141 . . . . 5 ((𝜑𝑅 < (abs‘𝑋)) → (𝑅 + (abs‘𝑋)) ∈ ℝ)
3130rehalfcld 12368 . . . 4 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) ∈ ℝ)
32 ssrab2 4027 . . . . . . 7 {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ⊆ ℝ
3332, 1sstri 3939 . . . . . 6 {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ⊆ ℝ*
347adantr 480 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → 𝐴:ℕ0⟶ℂ)
3531recnd 11140 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) ∈ ℂ)
362adantr 480 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → 𝑋 ∈ ℂ)
37 0red 11115 . . . . . . . . . . 11 ((𝜑𝑅 < (abs‘𝑋)) → 0 ∈ ℝ)
3819adantr 480 . . . . . . . . . . . 12 ((𝜑𝑅 < (abs‘𝑋)) → 0 ≤ 𝑅)
3937, 26, 31, 38, 29lelttrd 11271 . . . . . . . . . . 11 ((𝜑𝑅 < (abs‘𝑋)) → 0 < ((𝑅 + (abs‘𝑋)) / 2))
4037, 31, 39ltled 11261 . . . . . . . . . 10 ((𝜑𝑅 < (abs‘𝑋)) → 0 ≤ ((𝑅 + (abs‘𝑋)) / 2))
4131, 40absidd 15330 . . . . . . . . 9 ((𝜑𝑅 < (abs‘𝑋)) → (abs‘((𝑅 + (abs‘𝑋)) / 2)) = ((𝑅 + (abs‘𝑋)) / 2))
42 avglt2 12360 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ (abs‘𝑋) ∈ ℝ) → (𝑅 < (abs‘𝑋) ↔ ((𝑅 + (abs‘𝑋)) / 2) < (abs‘𝑋)))
4326, 13, 42syl2anc 584 . . . . . . . . . 10 ((𝜑𝑅 < (abs‘𝑋)) → (𝑅 < (abs‘𝑋) ↔ ((𝑅 + (abs‘𝑋)) / 2) < (abs‘𝑋)))
4411, 43mpbid 232 . . . . . . . . 9 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) < (abs‘𝑋))
4541, 44eqbrtrd 5111 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → (abs‘((𝑅 + (abs‘𝑋)) / 2)) < (abs‘𝑋))
46 radcnvle.a . . . . . . . . 9 (𝜑 → seq0( + , (𝐺𝑋)) ∈ dom ⇝ )
4746adantr 480 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → seq0( + , (𝐺𝑋)) ∈ dom ⇝ )
486, 34, 35, 36, 45, 47radcnvlem3 26351 . . . . . . 7 ((𝜑𝑅 < (abs‘𝑋)) → seq0( + , (𝐺‘((𝑅 + (abs‘𝑋)) / 2))) ∈ dom ⇝ )
49 fveq2 6822 . . . . . . . . . 10 (𝑦 = ((𝑅 + (abs‘𝑋)) / 2) → (𝐺𝑦) = (𝐺‘((𝑅 + (abs‘𝑋)) / 2)))
5049seqeq3d 13916 . . . . . . . . 9 (𝑦 = ((𝑅 + (abs‘𝑋)) / 2) → seq0( + , (𝐺𝑦)) = seq0( + , (𝐺‘((𝑅 + (abs‘𝑋)) / 2))))
5150eleq1d 2816 . . . . . . . 8 (𝑦 = ((𝑅 + (abs‘𝑋)) / 2) → (seq0( + , (𝐺𝑦)) ∈ dom ⇝ ↔ seq0( + , (𝐺‘((𝑅 + (abs‘𝑋)) / 2))) ∈ dom ⇝ ))
52 fveq2 6822 . . . . . . . . . . 11 (𝑟 = 𝑦 → (𝐺𝑟) = (𝐺𝑦))
5352seqeq3d 13916 . . . . . . . . . 10 (𝑟 = 𝑦 → seq0( + , (𝐺𝑟)) = seq0( + , (𝐺𝑦)))
5453eleq1d 2816 . . . . . . . . 9 (𝑟 = 𝑦 → (seq0( + , (𝐺𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺𝑦)) ∈ dom ⇝ ))
5554cbvrabv 3405 . . . . . . . 8 {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } = {𝑦 ∈ ℝ ∣ seq0( + , (𝐺𝑦)) ∈ dom ⇝ }
5651, 55elrab2 3645 . . . . . . 7 (((𝑅 + (abs‘𝑋)) / 2) ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ (((𝑅 + (abs‘𝑋)) / 2) ∈ ℝ ∧ seq0( + , (𝐺‘((𝑅 + (abs‘𝑋)) / 2))) ∈ dom ⇝ ))
5731, 48, 56sylanbrc 583 . . . . . 6 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
58 supxrub 13223 . . . . . 6 (({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ⊆ ℝ* ∧ ((𝑅 + (abs‘𝑋)) / 2) ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }) → ((𝑅 + (abs‘𝑋)) / 2) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ))
5933, 57, 58sylancr 587 . . . . 5 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ))
6059, 8breqtrrdi 5131 . . . 4 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) ≤ 𝑅)
6131, 26, 60lensymd 11264 . . 3 ((𝜑𝑅 < (abs‘𝑋)) → ¬ 𝑅 < ((𝑅 + (abs‘𝑋)) / 2))
6229, 61pm2.65da 816 . 2 (𝜑 → ¬ 𝑅 < (abs‘𝑋))
634, 10, 62xrnltled 11181 1 (𝜑 → (abs‘𝑋) ≤ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  {crab 3395  wss 3897   class class class wbr 5089  cmpt 5170  dom cdm 5614  wf 6477  cfv 6481  (class class class)co 7346  supcsup 9324  cc 11004  cr 11005  0cc0 11006   + caddc 11009   · cmul 11011  +∞cpnf 11143  -∞cmnf 11144  *cxr 11145   < clt 11146  cle 11147   / cdiv 11774  2c2 12180  0cn0 12381  [,]cicc 13248  seqcseq 13908  cexp 13968  abscabs 15141  cli 15391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594
This theorem is referenced by:  pserdvlem2  26365  abelthlem1  26368  logtayl  26596
  Copyright terms: Public domain W3C validator