MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnvle Structured version   Visualization version   GIF version

Theorem radcnvle 26273
Description: If 𝑋 is a convergent point of the infinite series, then 𝑋 is within the closed disk of radius 𝑅 centered at zero. Or, by contraposition, the series diverges at any point strictly more than 𝑅 from the origin. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnv.a (𝜑𝐴:ℕ0⟶ℂ)
radcnv.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
radcnvle.x (𝜑𝑋 ∈ ℂ)
radcnvle.a (𝜑 → seq0( + , (𝐺𝑋)) ∈ dom ⇝ )
Assertion
Ref Expression
radcnvle (𝜑 → (abs‘𝑋) ≤ 𝑅)
Distinct variable groups:   𝑥,𝑛,𝐴   𝐺,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑟)   𝑅(𝑥,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝑋(𝑥,𝑛,𝑟)

Proof of Theorem radcnvle
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ressxr 11255 . . 3 ℝ ⊆ ℝ*
2 radcnvle.x . . . 4 (𝜑𝑋 ∈ ℂ)
32abscld 15380 . . 3 (𝜑 → (abs‘𝑋) ∈ ℝ)
41, 3sselid 3972 . 2 (𝜑 → (abs‘𝑋) ∈ ℝ*)
5 iccssxr 13404 . . 3 (0[,]+∞) ⊆ ℝ*
6 pser.g . . . 4 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
7 radcnv.a . . . 4 (𝜑𝐴:ℕ0⟶ℂ)
8 radcnv.r . . . 4 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
96, 7, 8radcnvcl 26270 . . 3 (𝜑𝑅 ∈ (0[,]+∞))
105, 9sselid 3972 . 2 (𝜑𝑅 ∈ ℝ*)
11 simpr 484 . . . 4 ((𝜑𝑅 < (abs‘𝑋)) → 𝑅 < (abs‘𝑋))
1210adantr 480 . . . . . 6 ((𝜑𝑅 < (abs‘𝑋)) → 𝑅 ∈ ℝ*)
133adantr 480 . . . . . 6 ((𝜑𝑅 < (abs‘𝑋)) → (abs‘𝑋) ∈ ℝ)
14 0xr 11258 . . . . . . . . . . 11 0 ∈ ℝ*
15 pnfxr 11265 . . . . . . . . . . 11 +∞ ∈ ℝ*
16 elicc1 13365 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞)))
1714, 15, 16mp2an 689 . . . . . . . . . 10 (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞))
189, 17sylib 217 . . . . . . . . 9 (𝜑 → (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞))
1918simp2d 1140 . . . . . . . 8 (𝜑 → 0 ≤ 𝑅)
20 ge0gtmnf 13148 . . . . . . . 8 ((𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅) → -∞ < 𝑅)
2110, 19, 20syl2anc 583 . . . . . . 7 (𝜑 → -∞ < 𝑅)
2221adantr 480 . . . . . 6 ((𝜑𝑅 < (abs‘𝑋)) → -∞ < 𝑅)
234adantr 480 . . . . . . 7 ((𝜑𝑅 < (abs‘𝑋)) → (abs‘𝑋) ∈ ℝ*)
2412, 23, 11xrltled 13126 . . . . . 6 ((𝜑𝑅 < (abs‘𝑋)) → 𝑅 ≤ (abs‘𝑋))
25 xrre 13145 . . . . . 6 (((𝑅 ∈ ℝ* ∧ (abs‘𝑋) ∈ ℝ) ∧ (-∞ < 𝑅𝑅 ≤ (abs‘𝑋))) → 𝑅 ∈ ℝ)
2612, 13, 22, 24, 25syl22anc 836 . . . . 5 ((𝜑𝑅 < (abs‘𝑋)) → 𝑅 ∈ ℝ)
27 avglt1 12447 . . . . 5 ((𝑅 ∈ ℝ ∧ (abs‘𝑋) ∈ ℝ) → (𝑅 < (abs‘𝑋) ↔ 𝑅 < ((𝑅 + (abs‘𝑋)) / 2)))
2826, 13, 27syl2anc 583 . . . 4 ((𝜑𝑅 < (abs‘𝑋)) → (𝑅 < (abs‘𝑋) ↔ 𝑅 < ((𝑅 + (abs‘𝑋)) / 2)))
2911, 28mpbid 231 . . 3 ((𝜑𝑅 < (abs‘𝑋)) → 𝑅 < ((𝑅 + (abs‘𝑋)) / 2))
3026, 13readdcld 11240 . . . . 5 ((𝜑𝑅 < (abs‘𝑋)) → (𝑅 + (abs‘𝑋)) ∈ ℝ)
3130rehalfcld 12456 . . . 4 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) ∈ ℝ)
32 ssrab2 4069 . . . . . . 7 {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ⊆ ℝ
3332, 1sstri 3983 . . . . . 6 {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ⊆ ℝ*
347adantr 480 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → 𝐴:ℕ0⟶ℂ)
3531recnd 11239 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) ∈ ℂ)
362adantr 480 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → 𝑋 ∈ ℂ)
37 0red 11214 . . . . . . . . . . 11 ((𝜑𝑅 < (abs‘𝑋)) → 0 ∈ ℝ)
3819adantr 480 . . . . . . . . . . . 12 ((𝜑𝑅 < (abs‘𝑋)) → 0 ≤ 𝑅)
3937, 26, 31, 38, 29lelttrd 11369 . . . . . . . . . . 11 ((𝜑𝑅 < (abs‘𝑋)) → 0 < ((𝑅 + (abs‘𝑋)) / 2))
4037, 31, 39ltled 11359 . . . . . . . . . 10 ((𝜑𝑅 < (abs‘𝑋)) → 0 ≤ ((𝑅 + (abs‘𝑋)) / 2))
4131, 40absidd 15366 . . . . . . . . 9 ((𝜑𝑅 < (abs‘𝑋)) → (abs‘((𝑅 + (abs‘𝑋)) / 2)) = ((𝑅 + (abs‘𝑋)) / 2))
42 avglt2 12448 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ (abs‘𝑋) ∈ ℝ) → (𝑅 < (abs‘𝑋) ↔ ((𝑅 + (abs‘𝑋)) / 2) < (abs‘𝑋)))
4326, 13, 42syl2anc 583 . . . . . . . . . 10 ((𝜑𝑅 < (abs‘𝑋)) → (𝑅 < (abs‘𝑋) ↔ ((𝑅 + (abs‘𝑋)) / 2) < (abs‘𝑋)))
4411, 43mpbid 231 . . . . . . . . 9 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) < (abs‘𝑋))
4541, 44eqbrtrd 5160 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → (abs‘((𝑅 + (abs‘𝑋)) / 2)) < (abs‘𝑋))
46 radcnvle.a . . . . . . . . 9 (𝜑 → seq0( + , (𝐺𝑋)) ∈ dom ⇝ )
4746adantr 480 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → seq0( + , (𝐺𝑋)) ∈ dom ⇝ )
486, 34, 35, 36, 45, 47radcnvlem3 26268 . . . . . . 7 ((𝜑𝑅 < (abs‘𝑋)) → seq0( + , (𝐺‘((𝑅 + (abs‘𝑋)) / 2))) ∈ dom ⇝ )
49 fveq2 6881 . . . . . . . . . 10 (𝑦 = ((𝑅 + (abs‘𝑋)) / 2) → (𝐺𝑦) = (𝐺‘((𝑅 + (abs‘𝑋)) / 2)))
5049seqeq3d 13971 . . . . . . . . 9 (𝑦 = ((𝑅 + (abs‘𝑋)) / 2) → seq0( + , (𝐺𝑦)) = seq0( + , (𝐺‘((𝑅 + (abs‘𝑋)) / 2))))
5150eleq1d 2810 . . . . . . . 8 (𝑦 = ((𝑅 + (abs‘𝑋)) / 2) → (seq0( + , (𝐺𝑦)) ∈ dom ⇝ ↔ seq0( + , (𝐺‘((𝑅 + (abs‘𝑋)) / 2))) ∈ dom ⇝ ))
52 fveq2 6881 . . . . . . . . . . 11 (𝑟 = 𝑦 → (𝐺𝑟) = (𝐺𝑦))
5352seqeq3d 13971 . . . . . . . . . 10 (𝑟 = 𝑦 → seq0( + , (𝐺𝑟)) = seq0( + , (𝐺𝑦)))
5453eleq1d 2810 . . . . . . . . 9 (𝑟 = 𝑦 → (seq0( + , (𝐺𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺𝑦)) ∈ dom ⇝ ))
5554cbvrabv 3434 . . . . . . . 8 {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } = {𝑦 ∈ ℝ ∣ seq0( + , (𝐺𝑦)) ∈ dom ⇝ }
5651, 55elrab2 3678 . . . . . . 7 (((𝑅 + (abs‘𝑋)) / 2) ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ (((𝑅 + (abs‘𝑋)) / 2) ∈ ℝ ∧ seq0( + , (𝐺‘((𝑅 + (abs‘𝑋)) / 2))) ∈ dom ⇝ ))
5731, 48, 56sylanbrc 582 . . . . . 6 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
58 supxrub 13300 . . . . . 6 (({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ⊆ ℝ* ∧ ((𝑅 + (abs‘𝑋)) / 2) ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }) → ((𝑅 + (abs‘𝑋)) / 2) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ))
5933, 57, 58sylancr 586 . . . . 5 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ))
6059, 8breqtrrdi 5180 . . . 4 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) ≤ 𝑅)
6131, 26, 60lensymd 11362 . . 3 ((𝜑𝑅 < (abs‘𝑋)) → ¬ 𝑅 < ((𝑅 + (abs‘𝑋)) / 2))
6229, 61pm2.65da 814 . 2 (𝜑 → ¬ 𝑅 < (abs‘𝑋))
634, 10, 62xrnltled 11279 1 (𝜑 → (abs‘𝑋) ≤ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  {crab 3424  wss 3940   class class class wbr 5138  cmpt 5221  dom cdm 5666  wf 6529  cfv 6533  (class class class)co 7401  supcsup 9431  cc 11104  cr 11105  0cc0 11106   + caddc 11109   · cmul 11111  +∞cpnf 11242  -∞cmnf 11243  *cxr 11244   < clt 11245  cle 11246   / cdiv 11868  2c2 12264  0cn0 12469  [,]cicc 13324  seqcseq 13963  cexp 14024  abscabs 15178  cli 15425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-fl 13754  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-limsup 15412  df-clim 15429  df-rlim 15430  df-sum 15630
This theorem is referenced by:  pserdvlem2  26282  abelthlem1  26285  logtayl  26510
  Copyright terms: Public domain W3C validator