New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iunxpf | GIF version |
Description: Indexed union on a cross product is equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008.) |
Ref | Expression |
---|---|
iunxpf.1 | ⊢ ℲyC |
iunxpf.2 | ⊢ ℲzC |
iunxpf.3 | ⊢ ℲxD |
iunxpf.4 | ⊢ (x = 〈y, z〉 → C = D) |
Ref | Expression |
---|---|
iunxpf | ⊢ ∪x ∈ (A × B)C = ∪y ∈ A ∪z ∈ B D |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxpf.1 | . . . . 5 ⊢ ℲyC | |
2 | 1 | nfel2 2502 | . . . 4 ⊢ Ⅎy w ∈ C |
3 | iunxpf.2 | . . . . 5 ⊢ ℲzC | |
4 | 3 | nfel2 2502 | . . . 4 ⊢ Ⅎz w ∈ C |
5 | iunxpf.3 | . . . . 5 ⊢ ℲxD | |
6 | 5 | nfel2 2502 | . . . 4 ⊢ Ⅎx w ∈ D |
7 | iunxpf.4 | . . . . 5 ⊢ (x = 〈y, z〉 → C = D) | |
8 | 7 | eleq2d 2420 | . . . 4 ⊢ (x = 〈y, z〉 → (w ∈ C ↔ w ∈ D)) |
9 | 2, 4, 6, 8 | rexxpf 4829 | . . 3 ⊢ (∃x ∈ (A × B)w ∈ C ↔ ∃y ∈ A ∃z ∈ B w ∈ D) |
10 | eliun 3974 | . . 3 ⊢ (w ∈ ∪x ∈ (A × B)C ↔ ∃x ∈ (A × B)w ∈ C) | |
11 | eliun 3974 | . . . 4 ⊢ (w ∈ ∪y ∈ A ∪z ∈ B D ↔ ∃y ∈ A w ∈ ∪z ∈ B D) | |
12 | eliun 3974 | . . . . 5 ⊢ (w ∈ ∪z ∈ B D ↔ ∃z ∈ B w ∈ D) | |
13 | 12 | rexbii 2640 | . . . 4 ⊢ (∃y ∈ A w ∈ ∪z ∈ B D ↔ ∃y ∈ A ∃z ∈ B w ∈ D) |
14 | 11, 13 | bitri 240 | . . 3 ⊢ (w ∈ ∪y ∈ A ∪z ∈ B D ↔ ∃y ∈ A ∃z ∈ B w ∈ D) |
15 | 9, 10, 14 | 3bitr4i 268 | . 2 ⊢ (w ∈ ∪x ∈ (A × B)C ↔ w ∈ ∪y ∈ A ∪z ∈ B D) |
16 | 15 | eqriv 2350 | 1 ⊢ ∪x ∈ (A × B)C = ∪y ∈ A ∪z ∈ B D |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 Ⅎwnfc 2477 ∃wrex 2616 ∪ciun 3970 〈cop 4562 × cxp 4771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-csb 3138 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-iun 3972 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-xp 4785 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |