MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem3 Structured version   Visualization version   GIF version

Theorem gausslemma2dlem3 25010
Description: Lemma 3 for gausslemma2d 25016. (Contributed by AV, 4-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
Assertion
Ref Expression
gausslemma2dlem3 (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑘,𝐻   𝑅,𝑘   𝜑,𝑘   𝑥,𝑀   𝑥,𝑘
Allowed substitution hints:   𝑃(𝑘)   𝑅(𝑥)   𝑀(𝑘)

Proof of Theorem gausslemma2dlem3
StepHypRef Expression
1 gausslemma2d.r . . . 4 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
21a1i 11 . . 3 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))))
3 oveq1 6617 . . . . . . 7 (𝑥 = 𝑘 → (𝑥 · 2) = (𝑘 · 2))
43breq1d 4628 . . . . . 6 (𝑥 = 𝑘 → ((𝑥 · 2) < (𝑃 / 2) ↔ (𝑘 · 2) < (𝑃 / 2)))
53oveq2d 6626 . . . . . 6 (𝑥 = 𝑘 → (𝑃 − (𝑥 · 2)) = (𝑃 − (𝑘 · 2)))
64, 3, 5ifbieq12d 4090 . . . . 5 (𝑥 = 𝑘 → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
76adantl 482 . . . 4 (((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) ∧ 𝑥 = 𝑘) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))))
8 gausslemma2d.p . . . . . . . 8 (𝜑𝑃 ∈ (ℙ ∖ {2}))
98gausslemma2dlem0a 24998 . . . . . . 7 (𝜑𝑃 ∈ ℕ)
10 elfz2 12283 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)...𝐻) ↔ (((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑘𝑘𝐻)))
11 gausslemma2d.m . . . . . . . . . . . . . . . . 17 𝑀 = (⌊‘(𝑃 / 4))
1211oveq1i 6620 . . . . . . . . . . . . . . . 16 (𝑀 + 1) = ((⌊‘(𝑃 / 4)) + 1)
1312breq1i 4625 . . . . . . . . . . . . . . 15 ((𝑀 + 1) ≤ 𝑘 ↔ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘)
14 nnre 10979 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
15 4re 11049 . . . . . . . . . . . . . . . . . . . . . . . 24 4 ∈ ℝ
1615a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → 4 ∈ ℝ)
17 4ne0 11069 . . . . . . . . . . . . . . . . . . . . . . . 24 4 ≠ 0
1817a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → 4 ≠ 0)
1914, 16, 18redivcld 10805 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℕ → (𝑃 / 4) ∈ ℝ)
2019adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑃 / 4) ∈ ℝ)
21 fllelt 12546 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 / 4) ∈ ℝ → ((⌊‘(𝑃 / 4)) ≤ (𝑃 / 4) ∧ (𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1)))
2220, 21syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((⌊‘(𝑃 / 4)) ≤ (𝑃 / 4) ∧ (𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1)))
2319flcld 12547 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℕ → (⌊‘(𝑃 / 4)) ∈ ℤ)
2423zred 11434 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℕ → (⌊‘(𝑃 / 4)) ∈ ℝ)
25 peano2re 10161 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⌊‘(𝑃 / 4)) ∈ ℝ → ((⌊‘(𝑃 / 4)) + 1) ∈ ℝ)
2624, 25syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ ℕ → ((⌊‘(𝑃 / 4)) + 1) ∈ ℝ)
2726adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((⌊‘(𝑃 / 4)) + 1) ∈ ℝ)
28 zre 11333 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
2928adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → 𝑘 ∈ ℝ)
30 ltleletr 10082 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 / 4) ∈ ℝ ∧ ((⌊‘(𝑃 / 4)) + 1) ∈ ℝ ∧ 𝑘 ∈ ℝ) → (((𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1) ∧ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘) → (𝑃 / 4) ≤ 𝑘))
3120, 27, 29, 30syl3anc 1323 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (((𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1) ∧ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘) → (𝑃 / 4) ≤ 𝑘))
3231expd 452 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1) → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘 → (𝑃 / 4) ≤ 𝑘)))
3332adantld 483 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (((⌊‘(𝑃 / 4)) ≤ (𝑃 / 4) ∧ (𝑃 / 4) < ((⌊‘(𝑃 / 4)) + 1)) → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘 → (𝑃 / 4) ≤ 𝑘)))
3422, 33mpd 15 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘 → (𝑃 / 4) ≤ 𝑘))
3534imp 445 . . . . . . . . . . . . . . . . . 18 (((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) ∧ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘) → (𝑃 / 4) ≤ 𝑘)
3614rehalfcld 11231 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℕ → (𝑃 / 2) ∈ ℝ)
3736adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑃 / 2) ∈ ℝ)
38 2re 11042 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℝ
3938a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ ℤ → 2 ∈ ℝ)
4028, 39remulcld 10022 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → (𝑘 · 2) ∈ ℝ)
4140adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑘 · 2) ∈ ℝ)
42 2pos 11064 . . . . . . . . . . . . . . . . . . . . . . 23 0 < 2
4338, 42pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℝ ∧ 0 < 2)
4443a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (2 ∈ ℝ ∧ 0 < 2))
45 lediv1 10840 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 / 2) ∈ ℝ ∧ (𝑘 · 2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ ((𝑃 / 2) / 2) ≤ ((𝑘 · 2) / 2)))
4637, 41, 44, 45syl3anc 1323 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ ((𝑃 / 2) / 2) ≤ ((𝑘 · 2) / 2)))
47 nncn 10980 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → 𝑃 ∈ ℂ)
48 2cnne0 11194 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 ∈ ℂ ∧ 2 ≠ 0)
4948a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → (2 ∈ ℂ ∧ 2 ≠ 0))
50 divdiv1 10688 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑃 / 2) / 2) = (𝑃 / (2 · 2)))
5147, 49, 49, 50syl3anc 1323 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℕ → ((𝑃 / 2) / 2) = (𝑃 / (2 · 2)))
52 2t2e4 11129 . . . . . . . . . . . . . . . . . . . . . . 23 (2 · 2) = 4
5352oveq2i 6621 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 / (2 · 2)) = (𝑃 / 4)
5451, 53syl6eq 2671 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℕ → ((𝑃 / 2) / 2) = (𝑃 / 4))
55 zcn 11334 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
56 2cnd 11045 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 2 ∈ ℂ)
57 2ne0 11065 . . . . . . . . . . . . . . . . . . . . . . 23 2 ≠ 0
5857a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 2 ≠ 0)
5955, 56, 58divcan4d 10759 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → ((𝑘 · 2) / 2) = 𝑘)
6054, 59breqan12rd 4635 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (((𝑃 / 2) / 2) ≤ ((𝑘 · 2) / 2) ↔ (𝑃 / 4) ≤ 𝑘))
6146, 60bitrd 268 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ (𝑃 / 4) ≤ 𝑘))
6261adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) ∧ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ (𝑃 / 4) ≤ 𝑘))
6335, 62mpbird 247 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℕ) ∧ ((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘) → (𝑃 / 2) ≤ (𝑘 · 2))
6463exp31 629 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → (𝑃 ∈ ℕ → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘 → (𝑃 / 2) ≤ (𝑘 · 2))))
6564com23 86 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℤ → (((⌊‘(𝑃 / 4)) + 1) ≤ 𝑘 → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2))))
6613, 65syl5bi 232 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ → ((𝑀 + 1) ≤ 𝑘 → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2))))
67663ad2ant3 1082 . . . . . . . . . . . . 13 (((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑘 → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2))))
6867com12 32 . . . . . . . . . . . 12 ((𝑀 + 1) ≤ 𝑘 → (((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2))))
6968adantr 481 . . . . . . . . . . 11 (((𝑀 + 1) ≤ 𝑘𝑘𝐻) → (((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2))))
7069impcom 446 . . . . . . . . . 10 ((((𝑀 + 1) ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ ((𝑀 + 1) ≤ 𝑘𝑘𝐻)) → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2)))
7110, 70sylbi 207 . . . . . . . . 9 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑃 ∈ ℕ → (𝑃 / 2) ≤ (𝑘 · 2)))
7271impcom 446 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑃 / 2) ≤ (𝑘 · 2))
73 elfzelz 12292 . . . . . . . . . . 11 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℤ)
7473zred 11434 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℝ)
7538a1i 11 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 2 ∈ ℝ)
7674, 75remulcld 10022 . . . . . . . . 9 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℝ)
77 lenlt 10068 . . . . . . . . 9 (((𝑃 / 2) ∈ ℝ ∧ (𝑘 · 2) ∈ ℝ) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ ¬ (𝑘 · 2) < (𝑃 / 2)))
7836, 76, 77syl2an 494 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ((𝑃 / 2) ≤ (𝑘 · 2) ↔ ¬ (𝑘 · 2) < (𝑃 / 2)))
7972, 78mpbid 222 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → ¬ (𝑘 · 2) < (𝑃 / 2))
809, 79sylan 488 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → ¬ (𝑘 · 2) < (𝑃 / 2))
8180adantr 481 . . . . 5 (((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) ∧ 𝑥 = 𝑘) → ¬ (𝑘 · 2) < (𝑃 / 2))
8281iffalsed 4074 . . . 4 (((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) ∧ 𝑥 = 𝑘) → if((𝑘 · 2) < (𝑃 / 2), (𝑘 · 2), (𝑃 − (𝑘 · 2))) = (𝑃 − (𝑘 · 2)))
837, 82eqtrd 2655 . . 3 (((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) ∧ 𝑥 = 𝑘) → if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) = (𝑃 − (𝑘 · 2)))
848, 11gausslemma2dlem0d 25001 . . . . . 6 (𝜑𝑀 ∈ ℕ0)
85 nn0p1nn 11284 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ)
86 nnuz 11675 . . . . . . 7 ℕ = (ℤ‘1)
8785, 86syl6eleq 2708 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ (ℤ‘1))
8884, 87syl 17 . . . . 5 (𝜑 → (𝑀 + 1) ∈ (ℤ‘1))
89 fzss1 12330 . . . . 5 ((𝑀 + 1) ∈ (ℤ‘1) → ((𝑀 + 1)...𝐻) ⊆ (1...𝐻))
9088, 89syl 17 . . . 4 (𝜑 → ((𝑀 + 1)...𝐻) ⊆ (1...𝐻))
9190sselda 3587 . . 3 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → 𝑘 ∈ (1...𝐻))
92 ovexd 6640 . . 3 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑃 − (𝑘 · 2)) ∈ V)
932, 83, 91, 92fvmptd 6250 . 2 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑅𝑘) = (𝑃 − (𝑘 · 2)))
9493ralrimiva 2961 1 (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  Vcvv 3189  cdif 3556  wss 3559  ifcif 4063  {csn 4153   class class class wbr 4618  cmpt 4678  cfv 5852  (class class class)co 6610  cc 9886  cr 9887  0cc0 9888  1c1 9889   + caddc 9891   · cmul 9893   < clt 10026  cle 10027  cmin 10218   / cdiv 10636  cn 10972  2c2 11022  4c4 11024  0cn0 11244  cz 11329  cuz 11639  ...cfz 12276  cfl 12539  cprime 15320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-inf 8301  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-n0 11245  df-z 11330  df-uz 11640  df-rp 11785  df-fz 12277  df-fl 12541  df-seq 12750  df-exp 12809  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-dvds 14919  df-prm 15321
This theorem is referenced by:  gausslemma2dlem5a  25012  gausslemma2dlem6  25014
  Copyright terms: Public domain W3C validator