Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkeritg Structured version   Visualization version   GIF version

Theorem dirkeritg 42407
Description: The definite integral of the Dirichlet Kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkeritg.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝑥 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))))
dirkeritg.n (𝜑𝑁 ∈ ℕ)
dirkeritg.f 𝐹 = (𝐷𝑁)
dirkeritg.a (𝜑𝐴 ∈ ℝ)
dirkeritg.b (𝜑𝐵 ∈ ℝ)
dirkeritg.aleb (𝜑𝐴𝐵)
dirkeritg.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) / π))
Assertion
Ref Expression
dirkeritg (𝜑 → ∫(𝐴(,)𝐵)(𝐹𝑥) d𝑥 = ((𝐺𝐵) − (𝐺𝐴)))
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘,𝑥   𝑥,𝐹   𝑘,𝑁,𝑥   𝜑,𝑘   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐴(𝑛)   𝐵(𝑛)   𝐷(𝑥,𝑘,𝑛)   𝐹(𝑘,𝑛)   𝐺(𝑥,𝑘,𝑛)   𝑁(𝑛)

Proof of Theorem dirkeritg
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6670 . . . 4 (𝑥 = 𝑠 → (𝐹𝑥) = (𝐹𝑠))
21cbvitgv 24377 . . 3 ∫(𝐴(,)𝐵)(𝐹𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐹𝑠) d𝑠
32a1i 11 . 2 (𝜑 → ∫(𝐴(,)𝐵)(𝐹𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐹𝑠) d𝑠)
4 elioore 12769 . . . . . 6 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
54adantl 484 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
6 halfre 11852 . . . . . . . . 9 (1 / 2) ∈ ℝ
76a1i 11 . . . . . . . 8 (𝑠 ∈ ℝ → (1 / 2) ∈ ℝ)
8 fzfid 13342 . . . . . . . . 9 (𝑠 ∈ ℝ → (1...𝑁) ∈ Fin)
9 elfzelz 12909 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℤ)
109zred 12088 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℝ)
1110adantl 484 . . . . . . . . . . 11 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℝ)
12 simpl 485 . . . . . . . . . . 11 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑠 ∈ ℝ)
1311, 12remulcld 10671 . . . . . . . . . 10 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · 𝑠) ∈ ℝ)
1413recoscld 15497 . . . . . . . . 9 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (cos‘(𝑘 · 𝑠)) ∈ ℝ)
158, 14fsumrecl 15091 . . . . . . . 8 (𝑠 ∈ ℝ → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) ∈ ℝ)
167, 15readdcld 10670 . . . . . . 7 (𝑠 ∈ ℝ → ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ℝ)
17 pire 25044 . . . . . . . 8 π ∈ ℝ
1817a1i 11 . . . . . . 7 (𝑠 ∈ ℝ → π ∈ ℝ)
19 pipos 25046 . . . . . . . . 9 0 < π
2017, 19gt0ne0ii 11176 . . . . . . . 8 π ≠ 0
2120a1i 11 . . . . . . 7 (𝑠 ∈ ℝ → π ≠ 0)
2216, 18, 21redivcld 11468 . . . . . 6 (𝑠 ∈ ℝ → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ)
235, 22syl 17 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ)
24 eqid 2821 . . . . . 6 (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
2524fvmpt2 6779 . . . . 5 ((𝑠 ∈ ℝ ∧ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ) → ((𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))‘𝑠) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
265, 23, 25syl2anc 586 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))‘𝑠) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
27 dirkeritg.d . . . . . . . 8 𝐷 = (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝑥 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))))
28 oveq1 7163 . . . . . . . . . . . 12 (𝑥 = 𝑠 → (𝑥 mod (2 · π)) = (𝑠 mod (2 · π)))
2928eqeq1d 2823 . . . . . . . . . . 11 (𝑥 = 𝑠 → ((𝑥 mod (2 · π)) = 0 ↔ (𝑠 mod (2 · π)) = 0))
30 oveq2 7164 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → ((𝑛 + (1 / 2)) · 𝑥) = ((𝑛 + (1 / 2)) · 𝑠))
3130fveq2d 6674 . . . . . . . . . . . 12 (𝑥 = 𝑠 → (sin‘((𝑛 + (1 / 2)) · 𝑥)) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
32 oveq1 7163 . . . . . . . . . . . . . 14 (𝑥 = 𝑠 → (𝑥 / 2) = (𝑠 / 2))
3332fveq2d 6674 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → (sin‘(𝑥 / 2)) = (sin‘(𝑠 / 2)))
3433oveq2d 7172 . . . . . . . . . . . 12 (𝑥 = 𝑠 → ((2 · π) · (sin‘(𝑥 / 2))) = ((2 · π) · (sin‘(𝑠 / 2))))
3531, 34oveq12d 7174 . . . . . . . . . . 11 (𝑥 = 𝑠 → ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))) = ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))
3629, 35ifbieq2d 4492 . . . . . . . . . 10 (𝑥 = 𝑠 → if((𝑥 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))) = if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
3736cbvmptv 5169 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ if((𝑥 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2)))))) = (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))
3837mpteq2i 5158 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if((𝑥 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑥)) / ((2 · π) · (sin‘(𝑥 / 2))))))) = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
3927, 38eqtri 2844 . . . . . . 7 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))
40 dirkeritg.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
41 dirkeritg.f . . . . . . 7 𝐹 = (𝐷𝑁)
4239, 40, 41, 24dirkertrigeq 42406 . . . . . 6 (𝜑𝐹 = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)))
4342fveq1d 6672 . . . . 5 (𝜑 → (𝐹𝑠) = ((𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))‘𝑠))
4443adantr 483 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹𝑠) = ((𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))‘𝑠))
45 dirkeritg.g . . . . . . . 8 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) / π))
46 oveq2 7164 . . . . . . . . . . . . . 14 (𝑥 = 𝑠 → (𝑘 · 𝑥) = (𝑘 · 𝑠))
4746fveq2d 6674 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → (sin‘(𝑘 · 𝑥)) = (sin‘(𝑘 · 𝑠)))
4847oveq1d 7171 . . . . . . . . . . . 12 (𝑥 = 𝑠 → ((sin‘(𝑘 · 𝑥)) / 𝑘) = ((sin‘(𝑘 · 𝑠)) / 𝑘))
4948sumeq2sdv 15061 . . . . . . . . . . 11 (𝑥 = 𝑠 → Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘) = Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘))
5032, 49oveq12d 7174 . . . . . . . . . 10 (𝑥 = 𝑠 → ((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) = ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)))
5150oveq1d 7171 . . . . . . . . 9 (𝑥 = 𝑠 → (((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) / π) = (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))
5251cbvmptv 5169 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ (((𝑥 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑥)) / 𝑘)) / π)) = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))
5345, 52eqtri 2844 . . . . . . 7 𝐺 = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))
5453oveq2i 7167 . . . . . 6 (ℝ D 𝐺) = (ℝ D (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π)))
55 reelprrecn 10629 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
5655a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
57 recn 10627 . . . . . . . . . . 11 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
5857halfcld 11883 . . . . . . . . . 10 (𝑠 ∈ ℝ → (𝑠 / 2) ∈ ℂ)
599zcnd 12089 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ)
6059adantl 484 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ)
6157adantr 483 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑠 ∈ ℂ)
6260, 61mulcld 10661 . . . . . . . . . . . . 13 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · 𝑠) ∈ ℂ)
6362sincld 15483 . . . . . . . . . . . 12 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → (sin‘(𝑘 · 𝑠)) ∈ ℂ)
64 0red 10644 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → 0 ∈ ℝ)
65 1red 10642 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → 1 ∈ ℝ)
66 0lt1 11162 . . . . . . . . . . . . . . . 16 0 < 1
6766a1i 11 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → 0 < 1)
68 elfzle1 12911 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → 1 ≤ 𝑘)
6964, 65, 10, 67, 68ltletrd 10800 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑁) → 0 < 𝑘)
7069gt0ne0d 11204 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑁) → 𝑘 ≠ 0)
7170adantl 484 . . . . . . . . . . . 12 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ≠ 0)
7263, 60, 71divcld 11416 . . . . . . . . . . 11 ((𝑠 ∈ ℝ ∧ 𝑘 ∈ (1...𝑁)) → ((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ)
738, 72fsumcl 15090 . . . . . . . . . 10 (𝑠 ∈ ℝ → Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ)
7458, 73addcld 10660 . . . . . . . . 9 (𝑠 ∈ ℝ → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) ∈ ℂ)
75 picn 25045 . . . . . . . . . 10 π ∈ ℂ
7675a1i 11 . . . . . . . . 9 (𝑠 ∈ ℝ → π ∈ ℂ)
7774, 76, 21divcld 11416 . . . . . . . 8 (𝑠 ∈ ℝ → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) ∈ ℂ)
7877adantl 484 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π) ∈ ℂ)
7922adantl 484 . . . . . . 7 ((𝜑𝑠 ∈ ℝ) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ)
8074adantl 484 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ) → ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) ∈ ℂ)
8116adantl 484 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ) → ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ℝ)
8258adantl 484 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ) → (𝑠 / 2) ∈ ℂ)
836a1i 11 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ) → (1 / 2) ∈ ℝ)
8457adantl 484 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ) → 𝑠 ∈ ℂ)
85 1red 10642 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℝ) → 1 ∈ ℝ)
8656dvmptid 24554 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝑠)) = (𝑠 ∈ ℝ ↦ 1))
87 2cnd 11716 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
88 2ne0 11742 . . . . . . . . . . 11 2 ≠ 0
8988a1i 11 . . . . . . . . . 10 (𝜑 → 2 ≠ 0)
9056, 84, 85, 86, 87, 89dvmptdivc 24562 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ (𝑠 / 2))) = (𝑠 ∈ ℝ ↦ (1 / 2)))
9173adantl 484 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ) → Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ)
9215adantl 484 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) ∈ ℝ)
93 eqid 2821 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
9493tgioo2 23411 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
95 reopn 41575 . . . . . . . . . . 11 ℝ ∈ (topGen‘ran (,))
9695a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ (topGen‘ran (,)))
97 fzfid 13342 . . . . . . . . . 10 (𝜑 → (1...𝑁) ∈ Fin)
9872ancoms 461 . . . . . . . . . . 11 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → ((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ)
99983adant1 1126 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → ((sin‘(𝑘 · 𝑠)) / 𝑘) ∈ ℂ)
10014ancoms 461 . . . . . . . . . . . 12 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (cos‘(𝑘 · 𝑠)) ∈ ℝ)
101100recnd 10669 . . . . . . . . . . 11 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (cos‘(𝑘 · 𝑠)) ∈ ℂ)
1021013adant1 1126 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (cos‘(𝑘 · 𝑠)) ∈ ℂ)
10355a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑁) → ℝ ∈ {ℝ, ℂ})
10463ancoms 461 . . . . . . . . . . . . 13 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (sin‘(𝑘 · 𝑠)) ∈ ℂ)
10559adantr 483 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → 𝑘 ∈ ℂ)
106 simpr 487 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → 𝑠 ∈ ℂ)
107105, 106mulcld 10661 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → (𝑘 · 𝑠) ∈ ℂ)
108107coscld 15484 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → (cos‘(𝑘 · 𝑠)) ∈ ℂ)
109105, 108mulcld 10661 . . . . . . . . . . . . . 14 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → (𝑘 · (cos‘(𝑘 · 𝑠))) ∈ ℂ)
11057, 109sylan2 594 . . . . . . . . . . . . 13 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → (𝑘 · (cos‘(𝑘 · 𝑠))) ∈ ℂ)
111 ax-resscn 10594 . . . . . . . . . . . . . . . . 17 ℝ ⊆ ℂ
112 resmpt 5905 . . . . . . . . . . . . . . . . 17 (ℝ ⊆ ℂ → ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠))))
113111, 112mp1i 13 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑁) → ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠))))
114113eqcomd 2827 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠))) = ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ))
115114oveq2d 7172 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑁) → (ℝ D (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠)))) = (ℝ D ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ)))
116107sincld 15483 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℂ) → (sin‘(𝑘 · 𝑠)) ∈ ℂ)
117116fmpttd 6879 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))):ℂ⟶ℂ)
118109ralrimiva 3182 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...𝑁) → ∀𝑠 ∈ ℂ (𝑘 · (cos‘(𝑘 · 𝑠))) ∈ ℂ)
119 dmmptg 6096 . . . . . . . . . . . . . . . . . 18 (∀𝑠 ∈ ℂ (𝑘 · (cos‘(𝑘 · 𝑠))) ∈ ℂ → dom (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) = ℂ)
120118, 119syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑁) → dom (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) = ℂ)
121111, 120sseqtrrid 4020 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑁) → ℝ ⊆ dom (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
122 dvsinax 42217 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℂ → (ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) = (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
12359, 122syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑁) → (ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) = (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
124123dmeqd 5774 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑁) → dom (ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) = dom (𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
125121, 124sseqtrrd 4008 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → ℝ ⊆ dom (ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))))
126 dvcnre 42220 . . . . . . . . . . . . . . 15 (((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))):ℂ⟶ℂ ∧ ℝ ⊆ dom (ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))))) → (ℝ D ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) ↾ ℝ))
127117, 125, 126syl2anc 586 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑁) → (ℝ D ((𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ↾ ℝ)) = ((ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) ↾ ℝ))
128123reseq1d 5852 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑁) → ((ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) ↾ ℝ) = ((𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) ↾ ℝ))
129 resmpt 5905 . . . . . . . . . . . . . . . 16 (ℝ ⊆ ℂ → ((𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
130111, 129ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℂ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (𝑘 · (cos‘(𝑘 · 𝑠))))
131128, 130syl6eq 2872 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑁) → ((ℂ D (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))) ↾ ℝ) = (𝑠 ∈ ℝ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
132115, 127, 1313eqtrd 2860 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑁) → (ℝ D (𝑠 ∈ ℝ ↦ (sin‘(𝑘 · 𝑠)))) = (𝑠 ∈ ℝ ↦ (𝑘 · (cos‘(𝑘 · 𝑠)))))
133103, 104, 110, 132, 59, 70dvmptdivc 24562 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → (ℝ D (𝑠 ∈ ℝ ↦ ((sin‘(𝑘 · 𝑠)) / 𝑘))) = (𝑠 ∈ ℝ ↦ ((𝑘 · (cos‘(𝑘 · 𝑠))) / 𝑘)))
13459adantr 483 . . . . . . . . . . . . . 14 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → 𝑘 ∈ ℂ)
13570adantr 483 . . . . . . . . . . . . . 14 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → 𝑘 ≠ 0)
136101, 134, 135divcan3d 11421 . . . . . . . . . . . . 13 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ ℝ) → ((𝑘 · (cos‘(𝑘 · 𝑠))) / 𝑘) = (cos‘(𝑘 · 𝑠)))
137136mpteq2dva 5161 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℝ ↦ ((𝑘 · (cos‘(𝑘 · 𝑠))) / 𝑘)) = (𝑠 ∈ ℝ ↦ (cos‘(𝑘 · 𝑠))))
138133, 137eqtrd 2856 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → (ℝ D (𝑠 ∈ ℝ ↦ ((sin‘(𝑘 · 𝑠)) / 𝑘))) = (𝑠 ∈ ℝ ↦ (cos‘(𝑘 · 𝑠))))
139138adantl 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝑁)) → (ℝ D (𝑠 ∈ ℝ ↦ ((sin‘(𝑘 · 𝑠)) / 𝑘))) = (𝑠 ∈ ℝ ↦ (cos‘(𝑘 · 𝑠))))
14094, 93, 56, 96, 97, 99, 102, 139dvmptfsum 24572 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘))) = (𝑠 ∈ ℝ ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))))
14156, 82, 83, 90, 91, 92, 140dvmptadd 24557 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)))) = (𝑠 ∈ ℝ ↦ ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)))))
14275a1i 11 . . . . . . . 8 (𝜑 → π ∈ ℂ)
14320a1i 11 . . . . . . . 8 (𝜑 → π ≠ 0)
14456, 80, 81, 141, 142, 143dvmptdivc 24562 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))) = (𝑠 ∈ ℝ ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)))
145 dirkeritg.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
146 dirkeritg.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
147145, 146iccssred 41800 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
148 iccntr 23429 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
149145, 146, 148syl2anc 586 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
15056, 78, 79, 144, 147, 94, 93, 149dvmptres2 24559 . . . . . 6 (𝜑 → (ℝ D (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)))
15154, 150syl5eq 2868 . . . . 5 (𝜑 → (ℝ D 𝐺) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)))
152151, 23fvmpt2d 6781 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑠) = (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π))
15326, 44, 1523eqtr4d 2866 . . 3 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐹𝑠) = ((ℝ D 𝐺)‘𝑠))
154153itgeq2dv 24382 . 2 (𝜑 → ∫(𝐴(,)𝐵)(𝐹𝑠) d𝑠 = ∫(𝐴(,)𝐵)((ℝ D 𝐺)‘𝑠) d𝑠)
155 dirkeritg.aleb . . 3 (𝜑𝐴𝐵)
156 ioosscn 41789 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℂ
157156a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
158 halfcn 11853 . . . . . . . 8 (1 / 2) ∈ ℂ
159158a1i 11 . . . . . . 7 (𝜑 → (1 / 2) ∈ ℂ)
160 ssid 3989 . . . . . . . 8 ℂ ⊆ ℂ
161160a1i 11 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
162157, 159, 161constcncfg 42174 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (1 / 2)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
163 eqid 2821 . . . . . . . . 9 (𝑠 ∈ ℂ ↦ (cos‘(𝑘 · 𝑠))) = (𝑠 ∈ ℂ ↦ (cos‘(𝑘 · 𝑠)))
164 coscn 25033 . . . . . . . . . . 11 cos ∈ (ℂ–cn→ℂ)
165164a1i 11 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → cos ∈ (ℂ–cn→ℂ))
166 eqid 2821 . . . . . . . . . . . 12 (𝑠 ∈ ℂ ↦ (𝑘 · 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑘 · 𝑠))
167166mulc1cncf 23513 . . . . . . . . . . 11 (𝑘 ∈ ℂ → (𝑠 ∈ ℂ ↦ (𝑘 · 𝑠)) ∈ (ℂ–cn→ℂ))
16859, 167syl 17 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℂ ↦ (𝑘 · 𝑠)) ∈ (ℂ–cn→ℂ))
169165, 168cncfmpt1f 23521 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℂ ↦ (cos‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ))
170156a1i 11 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → (𝐴(,)𝐵) ⊆ ℂ)
171160a1i 11 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → ℂ ⊆ ℂ)
1724, 101sylan2 594 . . . . . . . . 9 ((𝑘 ∈ (1...𝑁) ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (cos‘(𝑘 · 𝑠)) ∈ ℂ)
173163, 169, 170, 171, 172cncfmptssg 42173 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑘 · 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
174173adantl 484 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑁)) → (𝑠 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑘 · 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
175157, 97, 174fsumcncf 42181 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
176162, 175addcncf 42176 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
177 eqid 2821 . . . . . 6 (𝑠 ∈ ℂ ↦ π) = (𝑠 ∈ ℂ ↦ π)
178 cncfmptc 23519 . . . . . . . 8 ((π ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑠 ∈ ℂ ↦ π) ∈ (ℂ–cn→ℂ))
17975, 160, 160, 178mp3an 1457 . . . . . . 7 (𝑠 ∈ ℂ ↦ π) ∈ (ℂ–cn→ℂ)
180179a1i 11 . . . . . 6 (𝜑 → (𝑠 ∈ ℂ ↦ π) ∈ (ℂ–cn→ℂ))
181 difssd 4109 . . . . . 6 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
182 eldifsn 4719 . . . . . . . 8 (π ∈ (ℂ ∖ {0}) ↔ (π ∈ ℂ ∧ π ≠ 0))
18375, 20, 182mpbir2an 709 . . . . . . 7 π ∈ (ℂ ∖ {0})
184183a1i 11 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → π ∈ (ℂ ∖ {0}))
185177, 180, 157, 181, 184cncfmptssg 42173 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ π) ∈ ((𝐴(,)𝐵)–cn→(ℂ ∖ {0})))
186176, 185divcncf 24048 . . . 4 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
187151, 186eqeltrd 2913 . . 3 (𝜑 → (ℝ D 𝐺) ∈ ((𝐴(,)𝐵)–cn→ℂ))
188 ioossicc 12823 . . . . . 6 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
189188a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
190 ioombl 24166 . . . . . 6 (𝐴(,)𝐵) ∈ dom vol
191190a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
1926a1i 11 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (1 / 2) ∈ ℝ)
193 fzfid 13342 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (1...𝑁) ∈ Fin)
19410adantl 484 . . . . . . . . . 10 (((𝜑𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℝ)
195147sselda 3967 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℝ)
196195adantr 483 . . . . . . . . . 10 (((𝜑𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑘 ∈ (1...𝑁)) → 𝑠 ∈ ℝ)
197194, 196remulcld 10671 . . . . . . . . 9 (((𝜑𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 · 𝑠) ∈ ℝ)
198197recoscld 15497 . . . . . . . 8 (((𝜑𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑘 ∈ (1...𝑁)) → (cos‘(𝑘 · 𝑠)) ∈ ℝ)
199193, 198fsumrecl 15091 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) ∈ ℝ)
200192, 199readdcld 10670 . . . . . 6 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ℝ)
20117a1i 11 . . . . . 6 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → π ∈ ℝ)
20220a1i 11 . . . . . 6 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → π ≠ 0)
203200, 201, 202redivcld 11468 . . . . 5 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π) ∈ ℝ)
204147, 111sstrdi 3979 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
205204, 159, 161constcncfg 42174 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (1 / 2)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
206 eqid 2821 . . . . . . . . 9 (𝑠 ∈ ℂ ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) = (𝑠 ∈ ℂ ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)))
207169adantl 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝑁)) → (𝑠 ∈ ℂ ↦ (cos‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ))
208161, 97, 207fsumcncf 42181 . . . . . . . . 9 (𝜑 → (𝑠 ∈ ℂ ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ))
209199recnd 10669 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)) ∈ ℂ)
210206, 208, 204, 161, 209cncfmptssg 42173 . . . . . . . 8 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
211205, 210addcncf 42176 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ ((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠)))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
212183a1i 11 . . . . . . . 8 (𝜑 → π ∈ (ℂ ∖ {0}))
213204, 212, 181constcncfg 42174 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ π) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})))
214211, 213divcncf 24048 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
215 cniccibl 24441 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑠 ∈ (𝐴[,]𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑠 ∈ (𝐴[,]𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ 𝐿1)
216145, 146, 214, 215syl3anc 1367 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ 𝐿1)
217189, 191, 203, 216iblss 24405 . . . 4 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (((1 / 2) + Σ𝑘 ∈ (1...𝑁)(cos‘(𝑘 · 𝑠))) / π)) ∈ 𝐿1)
218151, 217eqeltrd 2913 . . 3 (𝜑 → (ℝ D 𝐺) ∈ 𝐿1)
219204, 161idcncfg 42175 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ 𝑠) ∈ ((𝐴[,]𝐵)–cn→ℂ))
220 2cn 11713 . . . . . . . . . 10 2 ∈ ℂ
221 eldifsn 4719 . . . . . . . . . 10 (2 ∈ (ℂ ∖ {0}) ↔ (2 ∈ ℂ ∧ 2 ≠ 0))
222220, 88, 221mpbir2an 709 . . . . . . . . 9 2 ∈ (ℂ ∖ {0})
223222a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ (ℂ ∖ {0}))
224204, 223, 181constcncfg 42174 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ 2) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})))
225219, 224divcncf 24048 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (𝑠 / 2)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
226 eqid 2821 . . . . . . . . 9 (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) = (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠)))
227 sincn 25032 . . . . . . . . . . . 12 sin ∈ (ℂ–cn→ℂ)
228227a1i 11 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → sin ∈ (ℂ–cn→ℂ))
229228, 168cncfmpt1f 23521 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ))
230229adantl 484 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑁)) → (𝑠 ∈ ℂ ↦ (sin‘(𝑘 · 𝑠))) ∈ (ℂ–cn→ℂ))
231204adantr 483 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑁)) → (𝐴[,]𝐵) ⊆ ℂ)
232160a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑁)) → ℂ ⊆ ℂ)
23359ad2antlr 725 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (1...𝑁)) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑘 ∈ ℂ)
234195recnd 10669 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℂ)
235234adantlr 713 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (1...𝑁)) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℂ)
236233, 235mulcld 10661 . . . . . . . . . 10 (((𝜑𝑘 ∈ (1...𝑁)) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (𝑘 · 𝑠) ∈ ℂ)
237236sincld 15483 . . . . . . . . 9 (((𝜑𝑘 ∈ (1...𝑁)) ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (sin‘(𝑘 · 𝑠)) ∈ ℂ)
238226, 230, 231, 232, 237cncfmptssg 42173 . . . . . . . 8 ((𝜑𝑘 ∈ (1...𝑁)) → (𝑠 ∈ (𝐴[,]𝐵) ↦ (sin‘(𝑘 · 𝑠))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
239 eldifsn 4719 . . . . . . . . . . 11 (𝑘 ∈ (ℂ ∖ {0}) ↔ (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0))
24059, 70, 239sylanbrc 585 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ (ℂ ∖ {0}))
241240adantl 484 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑁)) → 𝑘 ∈ (ℂ ∖ {0}))
242 difssd 4109 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑁)) → (ℂ ∖ {0}) ⊆ ℂ)
243231, 241, 242constcncfg 42174 . . . . . . . 8 ((𝜑𝑘 ∈ (1...𝑁)) → (𝑠 ∈ (𝐴[,]𝐵) ↦ 𝑘) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})))
244238, 243divcncf 24048 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑁)) → (𝑠 ∈ (𝐴[,]𝐵) ↦ ((sin‘(𝑘 · 𝑠)) / 𝑘)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
245204, 97, 244fsumcncf 42181 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
246225, 245addcncf 42176 . . . . 5 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ ((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
247246, 213divcncf 24048 . . . 4 (𝜑 → (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝑠 / 2) + Σ𝑘 ∈ (1...𝑁)((sin‘(𝑘 · 𝑠)) / 𝑘)) / π)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
24853, 247eqeltrid 2917 . . 3 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
249145, 146, 155, 187, 218, 248ftc2 24641 . 2 (𝜑 → ∫(𝐴(,)𝐵)((ℝ D 𝐺)‘𝑠) d𝑠 = ((𝐺𝐵) − (𝐺𝐴)))
2503, 154, 2493eqtrd 2860 1 (𝜑 → ∫(𝐴(,)𝐵)(𝐹𝑥) d𝑥 = ((𝐺𝐵) − (𝐺𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  wral 3138  cdif 3933  wss 3936  ifcif 4467  {csn 4567  {cpr 4569   class class class wbr 5066  cmpt 5146  dom cdm 5555  ran crn 5556  cres 5557  wf 6351  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  cn 11638  2c2 11693  (,)cioo 12739  [,]cicc 12742  ...cfz 12893   mod cmo 13238  Σcsu 15042  sincsin 15417  cosccos 15418  πcpi 15420  TopOpenctopn 16695  topGenctg 16711  fldccnfld 20545  intcnt 21625  cnccncf 23484  volcvol 24064  𝐿1cibl 24218  citg 24219   D cdv 24461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cc 9857  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-symdif 4219  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-omul 8107  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-acn 9371  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-ovol 24065  df-vol 24066  df-mbf 24220  df-itg1 24221  df-itg2 24222  df-ibl 24223  df-itg 24224  df-0p 24271  df-limc 24464  df-dv 24465
This theorem is referenced by:  fourierdlem103  42514  fourierdlem104  42515
  Copyright terms: Public domain W3C validator