Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem39 Structured version   Visualization version   GIF version

Theorem fourierdlem39 42451
Description: Integration by parts of ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) d𝑥 (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem39.a (𝜑𝐴 ∈ ℝ)
fourierdlem39.b (𝜑𝐵 ∈ ℝ)
fourierdlem39.aleb (𝜑𝐴𝐵)
fourierdlem39.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
fourierdlem39.g 𝐺 = (ℝ D 𝐹)
fourierdlem39.gcn (𝜑𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
fourierdlem39.gbd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦)
fourierdlem39.r (𝜑𝑅 ∈ ℝ+)
Assertion
Ref Expression
fourierdlem39 (𝜑 → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) d𝑥 = ((((𝐹𝐵) · -((cos‘(𝑅 · 𝐵)) / 𝑅)) − ((𝐹𝐴) · -((cos‘(𝑅 · 𝐴)) / 𝑅))) − ∫(𝐴(,)𝐵)((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) d𝑥))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦

Proof of Theorem fourierdlem39
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem39.a . 2 (𝜑𝐴 ∈ ℝ)
2 fourierdlem39.b . 2 (𝜑𝐵 ∈ ℝ)
3 fourierdlem39.aleb . 2 (𝜑𝐴𝐵)
4 fourierdlem39.f . . . . . 6 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
5 cncff 23501 . . . . . 6 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
64, 5syl 17 . . . . 5 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
76feqmptd 6733 . . . 4 (𝜑𝐹 = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)))
87eqcomd 2827 . . 3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) = 𝐹)
98, 4eqeltrd 2913 . 2 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
10 coscn 25033 . . . . . 6 cos ∈ (ℂ–cn→ℂ)
1110a1i 11 . . . . 5 (𝜑 → cos ∈ (ℂ–cn→ℂ))
121, 2iccssred 41800 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
13 ax-resscn 10594 . . . . . . . 8 ℝ ⊆ ℂ
1412, 13sstrdi 3979 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
15 fourierdlem39.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ+)
1615rpred 12432 . . . . . . . 8 (𝜑𝑅 ∈ ℝ)
1716recnd 10669 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
18 ssid 3989 . . . . . . . 8 ℂ ⊆ ℂ
1918a1i 11 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
2014, 17, 19constcncfg 42174 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑅) ∈ ((𝐴[,]𝐵)–cn→ℂ))
2114, 19idcncfg 42175 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ))
2220, 21mulcncf 24047 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑅 · 𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
2311, 22cncfmpt1f 23521 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (cos‘(𝑅 · 𝑥))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
2415rpcnne0d 12441 . . . . . 6 (𝜑 → (𝑅 ∈ ℂ ∧ 𝑅 ≠ 0))
25 eldifsn 4719 . . . . . 6 (𝑅 ∈ (ℂ ∖ {0}) ↔ (𝑅 ∈ ℂ ∧ 𝑅 ≠ 0))
2624, 25sylibr 236 . . . . 5 (𝜑𝑅 ∈ (ℂ ∖ {0}))
27 difssd 4109 . . . . 5 (𝜑 → (ℂ ∖ {0}) ⊆ ℂ)
2814, 26, 27constcncfg 42174 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑅) ∈ ((𝐴[,]𝐵)–cn→(ℂ ∖ {0})))
2923, 28divcncf 24048 . . 3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
3029negcncfg 42184 . 2 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
31 fourierdlem39.gcn . . . . . 6 (𝜑𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ))
32 cncff 23501 . . . . . 6 (𝐺 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
3331, 32syl 17 . . . . 5 (𝜑𝐺:(𝐴(,)𝐵)⟶ℂ)
3433feqmptd 6733 . . . 4 (𝜑𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)))
3534eqcomd 2827 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)) = 𝐺)
3635, 31eqeltrd 2913 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
37 sincn 25032 . . . 4 sin ∈ (ℂ–cn→ℂ)
3837a1i 11 . . 3 (𝜑 → sin ∈ (ℂ–cn→ℂ))
39 ioosscn 41789 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
4039a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
4140, 17, 19constcncfg 42174 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑅) ∈ ((𝐴(,)𝐵)–cn→ℂ))
4240, 19idcncfg 42175 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑥) ∈ ((𝐴(,)𝐵)–cn→ℂ))
4341, 42mulcncf 24047 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝑅 · 𝑥)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
4438, 43cncfmpt1f 23521 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (sin‘(𝑅 · 𝑥))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
45 ioombl 24166 . . . 4 (𝐴(,)𝐵) ∈ dom vol
4645a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
47 volioo 24170 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
481, 2, 3, 47syl3anc 1367 . . . 4 (𝜑 → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
492, 1resubcld 11068 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℝ)
5048, 49eqeltrd 2913 . . 3 (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
51 eqid 2821 . . . . 5 (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥))
52 ioossicc 12823 . . . . . 6 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
5352a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
546adantr 483 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
5553sselda 3967 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
5654, 55ffvelrnd 6852 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
5751, 9, 53, 19, 56cncfmptssg 42173 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
5857, 44mulcncf 24047 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
59 cniccbdd 24062 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
601, 2, 4, 59syl3anc 1367 . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
61 nfra1 3219 . . . . . . . 8 𝑧𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦
6252sseli 3963 . . . . . . . . . 10 (𝑧 ∈ (𝐴(,)𝐵) → 𝑧 ∈ (𝐴[,]𝐵))
63 rspa 3206 . . . . . . . . . 10 ((∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦𝑧 ∈ (𝐴[,]𝐵)) → (abs‘(𝐹𝑧)) ≤ 𝑦)
6462, 63sylan2 594 . . . . . . . . 9 ((∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑧)) ≤ 𝑦)
6564ex 415 . . . . . . . 8 (∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → (𝑧 ∈ (𝐴(,)𝐵) → (abs‘(𝐹𝑧)) ≤ 𝑦))
6661, 65ralrimi 3216 . . . . . . 7 (∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
6766a1i 11 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦))
6867reximdva 3274 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦))
6960, 68mpd 15 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
70 nfv 1915 . . . . . . . 8 𝑧(𝜑𝑦 ∈ ℝ)
71 nfra1 3219 . . . . . . . 8 𝑧𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦
7270, 71nfan 1900 . . . . . . 7 𝑧((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
73 simpll 765 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → (𝜑𝑦 ∈ ℝ))
74 simpr 487 . . . . . . . . . . 11 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))))
7516adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℝ)
76 elioore 12769 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
7776adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
7875, 77remulcld 10671 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑅 · 𝑥) ∈ ℝ)
7978resincld 15496 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (sin‘(𝑅 · 𝑥)) ∈ ℝ)
8079recnd 10669 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (sin‘(𝑅 · 𝑥)) ∈ ℂ)
8156, 80mulcld 10661 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) ∈ ℂ)
8281ralrimiva 3182 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) ∈ ℂ)
83 dmmptg 6096 . . . . . . . . . . . . 13 (∀𝑥 ∈ (𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) ∈ ℂ → dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) = (𝐴(,)𝐵))
8482, 83syl 17 . . . . . . . . . . . 12 (𝜑 → dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) = (𝐴(,)𝐵))
8584adantr 483 . . . . . . . . . . 11 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) = (𝐴(,)𝐵))
8674, 85eleqtrd 2915 . . . . . . . . . 10 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → 𝑧 ∈ (𝐴(,)𝐵))
8786ad4ant14 750 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → 𝑧 ∈ (𝐴(,)𝐵))
88 simplr 767 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦)
8986adantlr 713 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → 𝑧 ∈ (𝐴(,)𝐵))
90 rspa 3206 . . . . . . . . . . 11 ((∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑧)) ≤ 𝑦)
9188, 89, 90syl2anc 586 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → (abs‘(𝐹𝑧)) ≤ 𝑦)
9291adantllr 717 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → (abs‘(𝐹𝑧)) ≤ 𝑦)
93 eqidd 2822 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))))
94 fveq2 6670 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
95 oveq2 7164 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (𝑅 · 𝑥) = (𝑅 · 𝑧))
9695fveq2d 6674 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (sin‘(𝑅 · 𝑥)) = (sin‘(𝑅 · 𝑧)))
9794, 96oveq12d 7174 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) = ((𝐹𝑧) · (sin‘(𝑅 · 𝑧))))
9897adantl 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑧) → ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) = ((𝐹𝑧) · (sin‘(𝑅 · 𝑧))))
99 simpr 487 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ (𝐴(,)𝐵))
1006adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
10152, 99sseldi 3965 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ (𝐴[,]𝐵))
102100, 101ffvelrnd 6852 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐹𝑧) ∈ ℂ)
10317adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℂ)
10439, 99sseldi 3965 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℂ)
105103, 104mulcld 10661 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑅 · 𝑧) ∈ ℂ)
106105sincld 15483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (sin‘(𝑅 · 𝑧)) ∈ ℂ)
107102, 106mulcld 10661 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝐹𝑧) · (sin‘(𝑅 · 𝑧))) ∈ ℂ)
10893, 98, 99, 107fvmptd 6775 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧) = ((𝐹𝑧) · (sin‘(𝑅 · 𝑧))))
109108fveq2d 6674 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) = (abs‘((𝐹𝑧) · (sin‘(𝑅 · 𝑧)))))
110102, 106absmuld 14814 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹𝑧) · (sin‘(𝑅 · 𝑧)))) = ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))))
111109, 110eqtrd 2856 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) = ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))))
112111adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) = ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))))
113112adantr 483 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) = ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))))
114 simplll 773 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝜑)
115 simplr 767 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝑧 ∈ (𝐴(,)𝐵))
116114, 115, 102syl2anc 586 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (𝐹𝑧) ∈ ℂ)
117116abscld 14796 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘(𝐹𝑧)) ∈ ℝ)
11817ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝑅 ∈ ℂ)
11939, 115sseldi 3965 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝑧 ∈ ℂ)
120118, 119mulcld 10661 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (𝑅 · 𝑧) ∈ ℂ)
121120sincld 15483 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (sin‘(𝑅 · 𝑧)) ∈ ℂ)
122121abscld 14796 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘(sin‘(𝑅 · 𝑧))) ∈ ℝ)
123117, 122remulcld 10671 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))) ∈ ℝ)
124 1red 10642 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 1 ∈ ℝ)
125117, 124remulcld 10671 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → ((abs‘(𝐹𝑧)) · 1) ∈ ℝ)
126 simpllr 774 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝑦 ∈ ℝ)
127126, 124remulcld 10671 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (𝑦 · 1) ∈ ℝ)
128106abscld 14796 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(sin‘(𝑅 · 𝑧))) ∈ ℝ)
129 1red 10642 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
130102abscld 14796 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑧)) ∈ ℝ)
131102absge0d 14804 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 0 ≤ (abs‘(𝐹𝑧)))
13216adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℝ)
133 elioore 12769 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝐴(,)𝐵) → 𝑧 ∈ ℝ)
134133adantl 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℝ)
135132, 134remulcld 10671 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑅 · 𝑧) ∈ ℝ)
136 abssinbd 41582 . . . . . . . . . . . . . . . 16 ((𝑅 · 𝑧) ∈ ℝ → (abs‘(sin‘(𝑅 · 𝑧))) ≤ 1)
137135, 136syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(sin‘(𝑅 · 𝑧))) ≤ 1)
138128, 129, 130, 131, 137lemul2ad 11580 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))) ≤ ((abs‘(𝐹𝑧)) · 1))
139138adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))) ≤ ((abs‘(𝐹𝑧)) · 1))
140139adantr 483 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))) ≤ ((abs‘(𝐹𝑧)) · 1))
141 0le1 11163 . . . . . . . . . . . . . 14 0 ≤ 1
142141a1i 11 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 0 ≤ 1)
143 simpr 487 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘(𝐹𝑧)) ≤ 𝑦)
144117, 126, 124, 142, 143lemul1ad 11579 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → ((abs‘(𝐹𝑧)) · 1) ≤ (𝑦 · 1))
145123, 125, 127, 140, 144letrd 10797 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → ((abs‘(𝐹𝑧)) · (abs‘(sin‘(𝑅 · 𝑧)))) ≤ (𝑦 · 1))
146113, 145eqbrtrd 5088 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ (𝑦 · 1))
147126recnd 10669 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → 𝑦 ∈ ℂ)
148147mulid1d 10658 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (𝑦 · 1) = 𝑦)
149146, 148breqtrd 5092 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝐹𝑧)) ≤ 𝑦) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦)
15073, 87, 92, 149syl21anc 835 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦)
151150ex 415 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) → (𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦))
15272, 151ralrimi 3216 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦) → ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦)
153152ex 415 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦))
154153reximdva 3274 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑧)) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦))
15569, 154mpd 15 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥))))‘𝑧)) ≤ 𝑦)
15646, 50, 58, 155cnbdibl 42267 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐹𝑥) · (sin‘(𝑅 · 𝑥)))) ∈ 𝐿1)
15711, 43cncfmpt1f 23521 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (cos‘(𝑅 · 𝑥))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
15840, 26, 27constcncfg 42174 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝑅) ∈ ((𝐴(,)𝐵)–cn→(ℂ ∖ {0})))
159157, 158divcncf 24048 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
160159negcncfg 42184 . . . 4 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
16136, 160mulcncf 24047 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))) ∈ ((𝐴(,)𝐵)–cn→ℂ))
162 simpr 487 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
16316adantr 483 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝑅 ∈ ℝ)
16415rpne0d 12437 . . . . . . . 8 (𝜑𝑅 ≠ 0)
165164adantr 483 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝑅 ≠ 0)
166162, 163, 165redivcld 11468 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝑦 / 𝑅) ∈ ℝ)
167166adantr 483 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) → (𝑦 / 𝑅) ∈ ℝ)
168 simpr 487 . . . . . . . . 9 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))))
16933ffvelrnda 6851 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) ∈ ℂ)
17017adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℂ)
17176recnd 10669 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℂ)
172171adantl 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℂ)
173170, 172mulcld 10661 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑅 · 𝑥) ∈ ℂ)
174173coscld 15484 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (cos‘(𝑅 · 𝑥)) ∈ ℂ)
175164adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑅 ≠ 0)
176174, 170, 175divcld 11416 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑅 · 𝑥)) / 𝑅) ∈ ℂ)
177176negcld 10984 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → -((cos‘(𝑅 · 𝑥)) / 𝑅) ∈ ℂ)
178169, 177mulcld 10661 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ℂ)
179178ralrimiva 3182 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ℂ)
180179adantr 483 . . . . . . . . . 10 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → ∀𝑥 ∈ (𝐴(,)𝐵)((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ℂ)
181 dmmptg 6096 . . . . . . . . . 10 (∀𝑥 ∈ (𝐴(,)𝐵)((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) ∈ ℂ → dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝐴(,)𝐵))
182180, 181syl 17 . . . . . . . . 9 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝐴(,)𝐵))
183168, 182eleqtrd 2915 . . . . . . . 8 ((𝜑𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → 𝑧 ∈ (𝐴(,)𝐵))
184183ad4ant14 750 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → 𝑧 ∈ (𝐴(,)𝐵))
185 eqidd 2822 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))))
186 fveq2 6670 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
18795fveq2d 6674 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (cos‘(𝑅 · 𝑥)) = (cos‘(𝑅 · 𝑧)))
188187oveq1d 7171 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((cos‘(𝑅 · 𝑥)) / 𝑅) = ((cos‘(𝑅 · 𝑧)) / 𝑅))
189188negeqd 10880 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → -((cos‘(𝑅 · 𝑥)) / 𝑅) = -((cos‘(𝑅 · 𝑧)) / 𝑅))
190186, 189oveq12d 7174 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅)))
191190adantl 484 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝐴(,)𝐵)) ∧ 𝑥 = 𝑧) → ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅)))
19233ffvelrnda 6851 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℂ)
193105coscld 15484 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (cos‘(𝑅 · 𝑧)) ∈ ℂ)
194164adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ≠ 0)
195193, 103, 194divcld 11416 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑅 · 𝑧)) / 𝑅) ∈ ℂ)
196195negcld 10984 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → -((cos‘(𝑅 · 𝑧)) / 𝑅) ∈ ℂ)
197192, 196mulcld 10661 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅)) ∈ ℂ)
198185, 191, 99, 197fvmptd 6775 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧) = ((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅)))
199198fveq2d 6674 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) = (abs‘((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅))))
200199ad4ant14 750 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) = (abs‘((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅))))
20133ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) → 𝐺:(𝐴(,)𝐵)⟶ℂ)
202201ffvelrnda 6851 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐺𝑧) ∈ ℂ)
203202abscld 14796 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐺𝑧)) ∈ ℝ)
204 simpllr 774 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ)
20517ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℂ)
206104ad4ant14 750 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℂ)
207205, 206mulcld 10661 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝑅 · 𝑧) ∈ ℂ)
208207coscld 15484 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (cos‘(𝑅 · 𝑧)) ∈ ℂ)
209164ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ≠ 0)
210208, 205, 209divcld 11416 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((cos‘(𝑅 · 𝑧)) / 𝑅) ∈ ℂ)
211210negcld 10984 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → -((cos‘(𝑅 · 𝑧)) / 𝑅) ∈ ℂ)
212211abscld 14796 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)) ∈ ℝ)
21315rprecred 12443 . . . . . . . . . . 11 (𝜑 → (1 / 𝑅) ∈ ℝ)
214213ad3antrrr 728 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (1 / 𝑅) ∈ ℝ)
215202absge0d 14804 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 0 ≤ (abs‘(𝐺𝑧)))
216211absge0d 14804 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 0 ≤ (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)))
217186fveq2d 6674 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (abs‘(𝐺𝑥)) = (abs‘(𝐺𝑧)))
218217breq1d 5076 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((abs‘(𝐺𝑥)) ≤ 𝑦 ↔ (abs‘(𝐺𝑧)) ≤ 𝑦))
219218rspccva 3622 . . . . . . . . . . 11 ((∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐺𝑧)) ≤ 𝑦)
220219adantll 712 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(𝐺𝑧)) ≤ 𝑦)
221195absnegd 14809 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)) = (abs‘((cos‘(𝑅 · 𝑧)) / 𝑅)))
222193, 103, 194absdivd 14815 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((cos‘(𝑅 · 𝑧)) / 𝑅)) = ((abs‘(cos‘(𝑅 · 𝑧))) / (abs‘𝑅)))
22315rpge0d 12436 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ 𝑅)
22416, 223absidd 14782 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘𝑅) = 𝑅)
225224oveq2d 7172 . . . . . . . . . . . . . 14 (𝜑 → ((abs‘(cos‘(𝑅 · 𝑧))) / (abs‘𝑅)) = ((abs‘(cos‘(𝑅 · 𝑧))) / 𝑅))
226225adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((abs‘(cos‘(𝑅 · 𝑧))) / (abs‘𝑅)) = ((abs‘(cos‘(𝑅 · 𝑧))) / 𝑅))
227221, 222, 2263eqtrd 2860 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)) = ((abs‘(cos‘(𝑅 · 𝑧))) / 𝑅))
228193abscld 14796 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(cos‘(𝑅 · 𝑧))) ∈ ℝ)
22915adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑅 ∈ ℝ+)
230 abscosbd 41564 . . . . . . . . . . . . . 14 ((𝑅 · 𝑧) ∈ ℝ → (abs‘(cos‘(𝑅 · 𝑧))) ≤ 1)
231135, 230syl 17 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘(cos‘(𝑅 · 𝑧))) ≤ 1)
232228, 129, 229, 231lediv1dd 12490 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → ((abs‘(cos‘(𝑅 · 𝑧))) / 𝑅) ≤ (1 / 𝑅))
233227, 232eqbrtrd 5088 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)) ≤ (1 / 𝑅))
234233ad4ant14 750 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅)) ≤ (1 / 𝑅))
235203, 204, 212, 214, 215, 216, 220, 234lemul12ad 11582 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐺𝑧)) · (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅))) ≤ (𝑦 · (1 / 𝑅)))
236192, 196absmuld 14814 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅))) = ((abs‘(𝐺𝑧)) · (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅))))
237236ad4ant14 750 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅))) = ((abs‘(𝐺𝑧)) · (abs‘-((cos‘(𝑅 · 𝑧)) / 𝑅))))
238204recnd 10669 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℂ)
239238, 205, 209divrecd 11419 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝑦 / 𝑅) = (𝑦 · (1 / 𝑅)))
240235, 237, 2393brtr4d 5098 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝐺𝑧) · -((cos‘(𝑅 · 𝑧)) / 𝑅))) ≤ (𝑦 / 𝑅))
241200, 240eqbrtrd 5088 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅))
242184, 241syldan 593 . . . . . 6 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) ∧ 𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))) → (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅))
243242ralrimiva 3182 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) → ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅))
244 breq2 5070 . . . . . . 7 (𝑤 = (𝑦 / 𝑅) → ((abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ 𝑤 ↔ (abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅)))
245244ralbidv 3197 . . . . . 6 (𝑤 = (𝑦 / 𝑅) → (∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ 𝑤 ↔ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅)))
246245rspcev 3623 . . . . 5 (((𝑦 / 𝑅) ∈ ℝ ∧ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ (𝑦 / 𝑅)) → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ 𝑤)
247167, 243, 246syl2anc 586 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦) → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ 𝑤)
248 fourierdlem39.gbd . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐺𝑥)) ≤ 𝑦)
249247, 248r19.29a 3289 . . 3 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑧 ∈ dom (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))(abs‘((𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)))‘𝑧)) ≤ 𝑤)
25046, 50, 161, 249cnbdibl 42267 . 2 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅))) ∈ 𝐿1)
2518oveq2d 7172 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥))) = (ℝ D 𝐹))
252 fourierdlem39.g . . . . 5 𝐺 = (ℝ D 𝐹)
253252eqcomi 2830 . . . 4 (ℝ D 𝐹) = 𝐺
254253a1i 11 . . 3 (𝜑 → (ℝ D 𝐹) = 𝐺)
255251, 254, 343eqtrd 2860 . 2 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)))
256 reelprrecn 10629 . . . . 5 ℝ ∈ {ℝ, ℂ}
257256a1i 11 . . . 4 (𝜑 → ℝ ∈ {ℝ, ℂ})
25817adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑅 ∈ ℂ)
259 recn 10627 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
260259adantl 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
261258, 260mulcld 10661 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝑅 · 𝑥) ∈ ℂ)
262261coscld 15484 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (cos‘(𝑅 · 𝑥)) ∈ ℂ)
263164adantr 483 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝑅 ≠ 0)
264262, 258, 263divcld 11416 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((cos‘(𝑅 · 𝑥)) / 𝑅) ∈ ℂ)
265264negcld 10984 . . . 4 ((𝜑𝑥 ∈ ℝ) → -((cos‘(𝑅 · 𝑥)) / 𝑅) ∈ ℂ)
26616adantr 483 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → 𝑅 ∈ ℝ)
267 simpr 487 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
268266, 267remulcld 10671 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑅 · 𝑥) ∈ ℝ)
269268resincld 15496 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (sin‘(𝑅 · 𝑥)) ∈ ℝ)
270269renegcld 11067 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → -(sin‘(𝑅 · 𝑥)) ∈ ℝ)
271270, 266remulcld 10671 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (-(sin‘(𝑅 · 𝑥)) · 𝑅) ∈ ℝ)
272271, 266, 263redivcld 11468 . . . . 5 ((𝜑𝑥 ∈ ℝ) → ((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) ∈ ℝ)
273272renegcld 11067 . . . 4 ((𝜑𝑥 ∈ ℝ) → -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) ∈ ℝ)
274 recoscl 15494 . . . . . . . . 9 (𝑦 ∈ ℝ → (cos‘𝑦) ∈ ℝ)
275274adantl 484 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (cos‘𝑦) ∈ ℝ)
276275recnd 10669 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (cos‘𝑦) ∈ ℂ)
277 resincl 15493 . . . . . . . . 9 (𝑦 ∈ ℝ → (sin‘𝑦) ∈ ℝ)
278277renegcld 11067 . . . . . . . 8 (𝑦 ∈ ℝ → -(sin‘𝑦) ∈ ℝ)
279278adantl 484 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → -(sin‘𝑦) ∈ ℝ)
280 1red 10642 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℝ)
281257dvmptid 24554 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
282257, 260, 280, 281, 17dvmptcmul 24561 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ (𝑅 · 𝑥))) = (𝑥 ∈ ℝ ↦ (𝑅 · 1)))
283258mulid1d 10658 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑅 · 1) = 𝑅)
284283mpteq2dva 5161 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ ↦ (𝑅 · 1)) = (𝑥 ∈ ℝ ↦ 𝑅))
285282, 284eqtrd 2856 . . . . . . 7 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ (𝑅 · 𝑥))) = (𝑥 ∈ ℝ ↦ 𝑅))
286 dvcosre 42216 . . . . . . . 8 (ℝ D (𝑦 ∈ ℝ ↦ (cos‘𝑦))) = (𝑦 ∈ ℝ ↦ -(sin‘𝑦))
287286a1i 11 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (cos‘𝑦))) = (𝑦 ∈ ℝ ↦ -(sin‘𝑦)))
288 fveq2 6670 . . . . . . 7 (𝑦 = (𝑅 · 𝑥) → (cos‘𝑦) = (cos‘(𝑅 · 𝑥)))
289 fveq2 6670 . . . . . . . 8 (𝑦 = (𝑅 · 𝑥) → (sin‘𝑦) = (sin‘(𝑅 · 𝑥)))
290289negeqd 10880 . . . . . . 7 (𝑦 = (𝑅 · 𝑥) → -(sin‘𝑦) = -(sin‘(𝑅 · 𝑥)))
291257, 257, 268, 266, 276, 279, 285, 287, 288, 290dvmptco 24569 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ (cos‘(𝑅 · 𝑥)))) = (𝑥 ∈ ℝ ↦ (-(sin‘(𝑅 · 𝑥)) · 𝑅)))
292257, 262, 271, 291, 17, 164dvmptdivc 24562 . . . . 5 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ ((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝑥 ∈ ℝ ↦ ((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅)))
293257, 264, 272, 292dvmptneg 24563 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝑥 ∈ ℝ ↦ -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅)))
294 eqid 2821 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
295294tgioo2 23411 . . . 4 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
296 iccntr 23429 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
2971, 2, 296syl2anc 586 . . . 4 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
298257, 265, 273, 293, 12, 295, 294, 297dvmptres2 24559 . . 3 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅)))
29980, 170mulneg1d 11093 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (-(sin‘(𝑅 · 𝑥)) · 𝑅) = -((sin‘(𝑅 · 𝑥)) · 𝑅))
300299oveq1d 7171 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = (-((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅))
30180, 170mulcld 10661 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((sin‘(𝑅 · 𝑥)) · 𝑅) ∈ ℂ)
302301, 170, 175divnegd 11429 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → -(((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = (-((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅))
303300, 302eqtr4d 2859 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = -(((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅))
304303negeqd 10880 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = --(((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅))
305301, 170, 175divcld 11416 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) ∈ ℂ)
306305negnegd 10988 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → --(((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = (((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅))
30780, 170, 175divcan4d 11422 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = (sin‘(𝑅 · 𝑥)))
308304, 306, 3073eqtrd 2860 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅) = (sin‘(𝑅 · 𝑥)))
309308mpteq2dva 5161 . . 3 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ -((-(sin‘(𝑅 · 𝑥)) · 𝑅) / 𝑅)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (sin‘(𝑅 · 𝑥))))
310298, 309eqtrd 2856 . 2 (𝜑 → (ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -((cos‘(𝑅 · 𝑥)) / 𝑅))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (sin‘(𝑅 · 𝑥))))
311 fveq2 6670 . . . 4 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
312 oveq2 7164 . . . . . . 7 (𝑥 = 𝐴 → (𝑅 · 𝑥) = (𝑅 · 𝐴))
313312fveq2d 6674 . . . . . 6 (𝑥 = 𝐴 → (cos‘(𝑅 · 𝑥)) = (cos‘(𝑅 · 𝐴)))
314313oveq1d 7171 . . . . 5 (𝑥 = 𝐴 → ((cos‘(𝑅 · 𝑥)) / 𝑅) = ((cos‘(𝑅 · 𝐴)) / 𝑅))
315314negeqd 10880 . . . 4 (𝑥 = 𝐴 → -((cos‘(𝑅 · 𝑥)) / 𝑅) = -((cos‘(𝑅 · 𝐴)) / 𝑅))
316311, 315oveq12d 7174 . . 3 (𝑥 = 𝐴 → ((𝐹𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐹𝐴) · -((cos‘(𝑅 · 𝐴)) / 𝑅)))
317316adantl 484 . 2 ((𝜑𝑥 = 𝐴) → ((𝐹𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐹𝐴) · -((cos‘(𝑅 · 𝐴)) / 𝑅)))
318 fveq2 6670 . . . 4 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
319 oveq2 7164 . . . . . . 7 (𝑥 = 𝐵 → (𝑅 · 𝑥) = (𝑅 · 𝐵))
320319fveq2d 6674 . . . . . 6 (𝑥 = 𝐵 → (cos‘(𝑅 · 𝑥)) = (cos‘(𝑅 · 𝐵)))
321320oveq1d 7171 . . . . 5 (𝑥 = 𝐵 → ((cos‘(𝑅 · 𝑥)) / 𝑅) = ((cos‘(𝑅 · 𝐵)) / 𝑅))
322321negeqd 10880 . . . 4 (𝑥 = 𝐵 → -((cos‘(𝑅 · 𝑥)) / 𝑅) = -((cos‘(𝑅 · 𝐵)) / 𝑅))
323318, 322oveq12d 7174 . . 3 (𝑥 = 𝐵 → ((𝐹𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐹𝐵) · -((cos‘(𝑅 · 𝐵)) / 𝑅)))
324323adantl 484 . 2 ((𝜑𝑥 = 𝐵) → ((𝐹𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) = ((𝐹𝐵) · -((cos‘(𝑅 · 𝐵)) / 𝑅)))
3251, 2, 3, 9, 30, 36, 44, 156, 250, 255, 310, 317, 324itgparts 24644 1 (𝜑 → ∫(𝐴(,)𝐵)((𝐹𝑥) · (sin‘(𝑅 · 𝑥))) d𝑥 = ((((𝐹𝐵) · -((cos‘(𝑅 · 𝐵)) / 𝑅)) − ((𝐹𝐴) · -((cos‘(𝑅 · 𝐴)) / 𝑅))) − ∫(𝐴(,)𝐵)((𝐺𝑥) · -((cos‘(𝑅 · 𝑥)) / 𝑅)) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  cdif 3933  wss 3936  {csn 4567  {cpr 4569   class class class wbr 5066  cmpt 5146  dom cdm 5555  ran crn 5556  wf 6351  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   · cmul 10542  cle 10676  cmin 10870  -cneg 10871   / cdiv 11297  +crp 12390  (,)cioo 12739  [,]cicc 12742  abscabs 14593  sincsin 15417  cosccos 15418  TopOpenctopn 16695  topGenctg 16711  fldccnfld 20545  intcnt 21625  cnccncf 23484  volcvol 24064  citg 24219   D cdv 24461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cc 9857  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-symdif 4219  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-omul 8107  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-acn 9371  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-ovol 24065  df-vol 24066  df-mbf 24220  df-itg1 24221  df-itg2 24222  df-ibl 24223  df-itg 24224  df-0p 24271  df-limc 24464  df-dv 24465
This theorem is referenced by:  fourierdlem73  42484
  Copyright terms: Public domain W3C validator