Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgmulc2nc Structured version   Visualization version   GIF version

Theorem itgmulc2nc 33608
Description: Choice-free analogue of itgmulc2 23645. (Contributed by Brendan Leahy, 19-Nov-2017.)
Hypotheses
Ref Expression
itgmulc2nc.1 (𝜑𝐶 ∈ ℂ)
itgmulc2nc.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgmulc2nc.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgmulc2nc.m (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
Assertion
Ref Expression
itgmulc2nc (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgmulc2nc
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 itgmulc2nc.1 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
21recld 13978 . . . . . . . 8 (𝜑 → (ℜ‘𝐶) ∈ ℝ)
32recnd 10106 . . . . . . 7 (𝜑 → (ℜ‘𝐶) ∈ ℂ)
43adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐶) ∈ ℂ)
5 itgmulc2nc.3 . . . . . . . . . 10 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
6 iblmbf 23579 . . . . . . . . . 10 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
75, 6syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
8 itgmulc2nc.2 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
97, 8mbfmptcl 23449 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
109recld 13978 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
1110recnd 10106 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
124, 11mulcld 10098 . . . . 5 ((𝜑𝑥𝐴) → ((ℜ‘𝐶) · (ℜ‘𝐵)) ∈ ℂ)
139iblcn 23610 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
145, 13mpbid 222 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
1514simpld 474 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
16 itgmulc2nc.m . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
17 ovexd 6720 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) ∈ V)
1816, 17mbfdm2 23450 . . . . . . . 8 (𝜑𝐴 ∈ dom vol)
19 fconstmpt 5197 . . . . . . . . 9 (𝐴 × {(ℜ‘𝐶)}) = (𝑥𝐴 ↦ (ℜ‘𝐶))
2019a1i 11 . . . . . . . 8 (𝜑 → (𝐴 × {(ℜ‘𝐶)}) = (𝑥𝐴 ↦ (ℜ‘𝐶)))
21 eqidd 2652 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) = (𝑥𝐴 ↦ (ℜ‘𝐵)))
2218, 4, 10, 20, 21offval2 6956 . . . . . . 7 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℜ‘𝐵))) = (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℜ‘𝐵))))
23 iblmbf 23579 . . . . . . . . 9 ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn)
2415, 23syl 17 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn)
25 eqid 2651 . . . . . . . . 9 (𝑥𝐴 ↦ (ℜ‘𝐵)) = (𝑥𝐴 ↦ (ℜ‘𝐵))
2611, 25fmptd 6425 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)):𝐴⟶ℂ)
2724, 2, 26mbfmulc2re 23460 . . . . . . 7 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∈ MblFn)
2822, 27eqeltrrd 2731 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℜ‘𝐵))) ∈ MblFn)
293, 10, 15, 28iblmulc2nc 33605 . . . . 5 (𝜑 → (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℜ‘𝐵))) ∈ 𝐿1)
3012, 29itgcl 23595 . . . 4 (𝜑 → ∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 ∈ ℂ)
31 ax-icn 10033 . . . . 5 i ∈ ℂ
329imcld 13979 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
3332recnd 10106 . . . . . . 7 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
344, 33mulcld 10098 . . . . . 6 ((𝜑𝑥𝐴) → ((ℜ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ)
3514simprd 478 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
36 eqidd 2652 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) = (𝑥𝐴 ↦ (ℑ‘𝐵)))
3718, 4, 32, 20, 36offval2 6956 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵))) = (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℑ‘𝐵))))
38 iblmbf 23579 . . . . . . . . . 10 ((𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)
3935, 38syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)
40 eqid 2651 . . . . . . . . . 10 (𝑥𝐴 ↦ (ℑ‘𝐵)) = (𝑥𝐴 ↦ (ℑ‘𝐵))
4133, 40fmptd 6425 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)):𝐴⟶ℂ)
4239, 2, 41mbfmulc2re 23460 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn)
4337, 42eqeltrrd 2731 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℑ‘𝐵))) ∈ MblFn)
443, 32, 35, 43iblmulc2nc 33605 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℑ‘𝐵))) ∈ 𝐿1)
4534, 44itgcl 23595 . . . . 5 (𝜑 → ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 ∈ ℂ)
46 mulcl 10058 . . . . 5 ((i ∈ ℂ ∧ ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 ∈ ℂ) → (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) ∈ ℂ)
4731, 45, 46sylancr 696 . . . 4 (𝜑 → (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) ∈ ℂ)
481imcld 13979 . . . . . . . . 9 (𝜑 → (ℑ‘𝐶) ∈ ℝ)
4948recnd 10106 . . . . . . . 8 (𝜑 → (ℑ‘𝐶) ∈ ℂ)
5049negcld 10417 . . . . . . 7 (𝜑 → -(ℑ‘𝐶) ∈ ℂ)
5150adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → -(ℑ‘𝐶) ∈ ℂ)
5251, 33mulcld 10098 . . . . 5 ((𝜑𝑥𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ)
53 fconstmpt 5197 . . . . . . . . 9 (𝐴 × {-(ℑ‘𝐶)}) = (𝑥𝐴 ↦ -(ℑ‘𝐶))
5453a1i 11 . . . . . . . 8 (𝜑 → (𝐴 × {-(ℑ‘𝐶)}) = (𝑥𝐴 ↦ -(ℑ‘𝐶)))
5518, 51, 32, 54, 36offval2 6956 . . . . . . 7 (𝜑 → ((𝐴 × {-(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵))) = (𝑥𝐴 ↦ (-(ℑ‘𝐶) · (ℑ‘𝐵))))
5648renegcld 10495 . . . . . . . 8 (𝜑 → -(ℑ‘𝐶) ∈ ℝ)
5739, 56, 41mbfmulc2re 23460 . . . . . . 7 (𝜑 → ((𝐴 × {-(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn)
5855, 57eqeltrrd 2731 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (-(ℑ‘𝐶) · (ℑ‘𝐵))) ∈ MblFn)
5950, 32, 35, 58iblmulc2nc 33605 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (-(ℑ‘𝐶) · (ℑ‘𝐵))) ∈ 𝐿1)
6052, 59itgcl 23595 . . . 4 (𝜑 → ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 ∈ ℂ)
6149adantr 480 . . . . . . 7 ((𝜑𝑥𝐴) → (ℑ‘𝐶) ∈ ℂ)
6261, 11mulcld 10098 . . . . . 6 ((𝜑𝑥𝐴) → ((ℑ‘𝐶) · (ℜ‘𝐵)) ∈ ℂ)
63 fconstmpt 5197 . . . . . . . . . 10 (𝐴 × {(ℑ‘𝐶)}) = (𝑥𝐴 ↦ (ℑ‘𝐶))
6463a1i 11 . . . . . . . . 9 (𝜑 → (𝐴 × {(ℑ‘𝐶)}) = (𝑥𝐴 ↦ (ℑ‘𝐶)))
6518, 61, 10, 64, 21offval2 6956 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℜ‘𝐵))) = (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℜ‘𝐵))))
6624, 48, 26mbfmulc2re 23460 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∈ MblFn)
6765, 66eqeltrrd 2731 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℜ‘𝐵))) ∈ MblFn)
6849, 10, 15, 67iblmulc2nc 33605 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℜ‘𝐵))) ∈ 𝐿1)
6962, 68itgcl 23595 . . . . 5 (𝜑 → ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥 ∈ ℂ)
70 mulcl 10058 . . . . 5 ((i ∈ ℂ ∧ ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥 ∈ ℂ) → (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) ∈ ℂ)
7131, 69, 70sylancr 696 . . . 4 (𝜑 → (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) ∈ ℂ)
7230, 47, 60, 71add4d 10302 . . 3 (𝜑 → ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)) + (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) + ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))))
7331a1i 11 . . . . . 6 (𝜑 → i ∈ ℂ)
7473, 49mulcld 10098 . . . . 5 (𝜑 → (i · (ℑ‘𝐶)) ∈ ℂ)
758, 5itgcl 23595 . . . . 5 (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ)
763, 74, 75adddird 10103 . . . 4 (𝜑 → (((ℜ‘𝐶) + (i · (ℑ‘𝐶))) · ∫𝐴𝐵 d𝑥) = (((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) + ((i · (ℑ‘𝐶)) · ∫𝐴𝐵 d𝑥)))
778, 5itgcnval 23611 . . . . . . 7 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))
7877oveq2d 6706 . . . . . 6 (𝜑 → ((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) = ((ℜ‘𝐶) · (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))))
7910, 15itgcl 23595 . . . . . . 7 (𝜑 → ∫𝐴(ℜ‘𝐵) d𝑥 ∈ ℂ)
8032, 35itgcl 23595 . . . . . . . 8 (𝜑 → ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ)
81 mulcl 10058 . . . . . . . 8 ((i ∈ ℂ ∧ ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ) → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
8231, 80, 81sylancr 696 . . . . . . 7 (𝜑 → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
833, 79, 82adddid 10102 . . . . . 6 (𝜑 → ((ℜ‘𝐶) · (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = (((ℜ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((ℜ‘𝐶) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))))
843, 10, 15, 28, 2, 10itgmulc2nclem2 33607 . . . . . . 7 (𝜑 → ((ℜ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) = ∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥)
853, 73, 80mul12d 10283 . . . . . . . 8 (𝜑 → ((ℜ‘𝐶) · (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (i · ((ℜ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)))
863, 32, 35, 43, 2, 32itgmulc2nclem2 33607 . . . . . . . . 9 (𝜑 → ((ℜ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)
8786oveq2d 6706 . . . . . . . 8 (𝜑 → (i · ((ℜ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) = (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥))
8885, 87eqtrd 2685 . . . . . . 7 (𝜑 → ((ℜ‘𝐶) · (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥))
8984, 88oveq12d 6708 . . . . . 6 (𝜑 → (((ℜ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((ℜ‘𝐶) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)))
9078, 83, 893eqtrd 2689 . . . . 5 (𝜑 → ((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)))
9177oveq2d 6706 . . . . . 6 (𝜑 → ((i · (ℑ‘𝐶)) · ∫𝐴𝐵 d𝑥) = ((i · (ℑ‘𝐶)) · (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))))
9274, 79, 82adddid 10102 . . . . . 6 (𝜑 → ((i · (ℑ‘𝐶)) · (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = (((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((i · (ℑ‘𝐶)) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))))
9373, 49, 79mulassd 10101 . . . . . . . . 9 (𝜑 → ((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) = (i · ((ℑ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥)))
9449, 10, 15, 67, 48, 10itgmulc2nclem2 33607 . . . . . . . . . 10 (𝜑 → ((ℑ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) = ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)
9594oveq2d 6706 . . . . . . . . 9 (𝜑 → (i · ((ℑ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥)) = (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))
9693, 95eqtrd 2685 . . . . . . . 8 (𝜑 → ((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) = (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))
9773, 49, 73, 80mul4d 10286 . . . . . . . . 9 (𝜑 → ((i · (ℑ‘𝐶)) · (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = ((i · i) · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)))
98 ixi 10694 . . . . . . . . . . 11 (i · i) = -1
9998oveq1i 6700 . . . . . . . . . 10 ((i · i) · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) = (-1 · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥))
10049, 80mulcld 10098 . . . . . . . . . . 11 (𝜑 → ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
101100mulm1d 10520 . . . . . . . . . 10 (𝜑 → (-1 · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) = -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥))
10299, 101syl5eq 2697 . . . . . . . . 9 (𝜑 → ((i · i) · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) = -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥))
10349, 80mulneg1d 10521 . . . . . . . . . 10 (𝜑 → (-(ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥))
10450, 32, 35, 58, 56, 32itgmulc2nclem2 33607 . . . . . . . . . 10 (𝜑 → (-(ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
105103, 104eqtr3d 2687 . . . . . . . . 9 (𝜑 → -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
10697, 102, 1053eqtrd 2689 . . . . . . . 8 (𝜑 → ((i · (ℑ‘𝐶)) · (i · ∫𝐴(ℑ‘𝐵) d𝑥)) = ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
10796, 106oveq12d 6708 . . . . . . 7 (𝜑 → (((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((i · (ℑ‘𝐶)) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = ((i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
10871, 60addcomd 10276 . . . . . . 7 (𝜑 → ((i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) = (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
109107, 108eqtrd 2685 . . . . . 6 (𝜑 → (((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((i · (ℑ‘𝐶)) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
11091, 92, 1093eqtrd 2689 . . . . 5 (𝜑 → ((i · (ℑ‘𝐶)) · ∫𝐴𝐵 d𝑥) = (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
11190, 110oveq12d 6708 . . . 4 (𝜑 → (((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) + ((i · (ℑ‘𝐶)) · ∫𝐴𝐵 d𝑥)) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)) + (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))))
11276, 111eqtrd 2685 . . 3 (𝜑 → (((ℜ‘𝐶) + (i · (ℑ‘𝐶))) · ∫𝐴𝐵 d𝑥) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)) + (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))))
11361, 33mulcld 10098 . . . . . 6 ((𝜑𝑥𝐴) → ((ℑ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ)
11418, 61, 32, 64, 36offval2 6956 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵))) = (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℑ‘𝐵))))
11539, 48, 41mbfmulc2re 23460 . . . . . . . 8 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn)
116114, 115eqeltrrd 2731 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℑ‘𝐵))) ∈ MblFn)
11749, 32, 35, 116iblmulc2nc 33605 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℑ‘𝐵))) ∈ 𝐿1)
1181adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
119118, 9mulcld 10098 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) ∈ ℂ)
120 eqidd 2652 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) = (𝑥𝐴 ↦ (𝐶 · 𝐵)))
121 ref 13896 . . . . . . . . . . 11 ℜ:ℂ⟶ℝ
122121a1i 11 . . . . . . . . . 10 (𝜑 → ℜ:ℂ⟶ℝ)
123122feqmptd 6288 . . . . . . . . 9 (𝜑 → ℜ = (𝑘 ∈ ℂ ↦ (ℜ‘𝑘)))
124 fveq2 6229 . . . . . . . . 9 (𝑘 = (𝐶 · 𝐵) → (ℜ‘𝑘) = (ℜ‘(𝐶 · 𝐵)))
125119, 120, 123, 124fmptco 6436 . . . . . . . 8 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) = (𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))))
126118, 9remuld 14002 . . . . . . . . 9 ((𝜑𝑥𝐴) → (ℜ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵))))
127126mpteq2dva 4777 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵)))))
128125, 127eqtrd 2685 . . . . . . 7 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵)))))
129 eqid 2651 . . . . . . . . . . 11 (𝑥𝐴 ↦ (𝐶 · 𝐵)) = (𝑥𝐴 ↦ (𝐶 · 𝐵))
130119, 129fmptd 6425 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)):𝐴⟶ℂ)
131 ismbfcn 23443 . . . . . . . . . 10 ((𝑥𝐴 ↦ (𝐶 · 𝐵)):𝐴⟶ℂ → ((𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn ↔ ((ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn)))
132130, 131syl 17 . . . . . . . . 9 (𝜑 → ((𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn ↔ ((ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn)))
13316, 132mpbid 222 . . . . . . . 8 (𝜑 → ((ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn))
134133simpld 474 . . . . . . 7 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn)
135128, 134eqeltrrd 2731 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵)))) ∈ MblFn)
13612, 29, 113, 117, 135itgsubnc 33602 . . . . 5 (𝜑 → ∫𝐴(((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵))) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 − ∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
137126itgeq2dv 23593 . . . . 5 (𝜑 → ∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 = ∫𝐴(((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵))) d𝑥)
138113, 117itgneg 23615 . . . . . . . 8 (𝜑 → -∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 = ∫𝐴-((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
13961, 33mulneg1d 10521 . . . . . . . . 9 ((𝜑𝑥𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) = -((ℑ‘𝐶) · (ℑ‘𝐵)))
140139itgeq2dv 23593 . . . . . . . 8 (𝜑 → ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 = ∫𝐴-((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
141138, 140eqtr4d 2688 . . . . . . 7 (𝜑 → -∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 = ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)
142141oveq2d 6706 . . . . . 6 (𝜑 → (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + -∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
143113, 117itgcl 23595 . . . . . . 7 (𝜑 → ∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 ∈ ℂ)
14430, 143negsubd 10436 . . . . . 6 (𝜑 → (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + -∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 − ∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
145142, 144eqtr3d 2687 . . . . 5 (𝜑 → (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 − ∫𝐴((ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
146136, 137, 1453eqtr4d 2695 . . . 4 (𝜑 → ∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥))
147118, 9immuld 14003 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))))
148147itgeq2dv 23593 . . . . . . 7 (𝜑 → ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥 = ∫𝐴(((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))) d𝑥)
149 imf 13897 . . . . . . . . . . . . 13 ℑ:ℂ⟶ℝ
150149a1i 11 . . . . . . . . . . . 12 (𝜑 → ℑ:ℂ⟶ℝ)
151150feqmptd 6288 . . . . . . . . . . 11 (𝜑 → ℑ = (𝑘 ∈ ℂ ↦ (ℑ‘𝑘)))
152 fveq2 6229 . . . . . . . . . . 11 (𝑘 = (𝐶 · 𝐵) → (ℑ‘𝑘) = (ℑ‘(𝐶 · 𝐵)))
153119, 120, 151, 152fmptco 6436 . . . . . . . . . 10 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) = (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))))
154147mpteq2dva 4777 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))))
155153, 154eqtrd 2685 . . . . . . . . 9 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))))
156133simprd 478 . . . . . . . . 9 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐶 · 𝐵))) ∈ MblFn)
157155, 156eqeltrrd 2731 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))) ∈ MblFn)
15834, 44, 62, 68, 157itgaddnc 33600 . . . . . . 7 (𝜑 → ∫𝐴(((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))
159148, 158eqtrd 2685 . . . . . 6 (𝜑 → ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))
160159oveq2d 6706 . . . . 5 (𝜑 → (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥) = (i · (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
16173, 45, 69adddid 10102 . . . . 5 (𝜑 → (i · (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)) = ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
162160, 161eqtrd 2685 . . . 4 (𝜑 → (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥) = ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))
163146, 162oveq12d 6708 . . 3 (𝜑 → (∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥)) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) + ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))))
16472, 112, 1633eqtr4d 2695 . 2 (𝜑 → (((ℜ‘𝐶) + (i · (ℑ‘𝐶))) · ∫𝐴𝐵 d𝑥) = (∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥)))
1651replimd 13981 . . 3 (𝜑𝐶 = ((ℜ‘𝐶) + (i · (ℑ‘𝐶))))
166165oveq1d 6705 . 2 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = (((ℜ‘𝐶) + (i · (ℑ‘𝐶))) · ∫𝐴𝐵 d𝑥))
1671, 8, 5, 16iblmulc2nc 33605 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1)
168119, 167itgcnval 23611 . 2 (𝜑 → ∫𝐴(𝐶 · 𝐵) d𝑥 = (∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥)))
169164, 166, 1683eqtr4d 2695 1 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  Vcvv 3231  {csn 4210  cmpt 4762   × cxp 5141  dom cdm 5143  ccom 5147  wf 5922  cfv 5926  (class class class)co 6690  𝑓 cof 6937  cc 9972  cr 9973  1c1 9975  ici 9976   + caddc 9977   · cmul 9979  cmin 10304  -cneg 10305  cre 13881  cim 13882  volcvol 23278  MblFncmbf 23428  𝐿1cibl 23431  citg 23432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-rest 16130  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-top 20747  df-topon 20764  df-bases 20798  df-cmp 21238  df-ovol 23279  df-vol 23280  df-mbf 23433  df-itg1 23434  df-itg2 23435  df-ibl 23436  df-itg 23437  df-0p 23482
This theorem is referenced by:  itgabsnc  33609
  Copyright terms: Public domain W3C validator