Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgabsnc Structured version   Visualization version   GIF version

Theorem itgabsnc 33138
Description: Choice-free analogue of itgabs 23520. (Contributed by Brendan Leahy, 19-Nov-2017.) (Revised by Brendan Leahy, 19-Jun-2018.)
Hypotheses
Ref Expression
itgabsnc.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgabsnc.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgabsnc.m1 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn)
itgabsnc.m2 (𝜑 → (𝑦𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ MblFn)
Assertion
Ref Expression
itgabsnc (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝜑,𝑥,𝑦   𝑥,𝑉,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgabsnc
StepHypRef Expression
1 itgabsnc.1 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵𝑉)
2 itgabsnc.2 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
31, 2itgcl 23469 . . . . . . . . . . 11 (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ)
43cjcld 13877 . . . . . . . . . 10 (𝜑 → (∗‘∫𝐴𝐵 d𝑥) ∈ ℂ)
5 iblmbf 23453 . . . . . . . . . . . . . . 15 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
62, 5syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
76, 1mbfmptcl 23323 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
87ralrimiva 2961 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℂ)
9 nfv 1840 . . . . . . . . . . . . 13 𝑦 𝐵 ∈ ℂ
10 nfcsb1v 3534 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥𝐵
1110nfel1 2775 . . . . . . . . . . . . 13 𝑥𝑦 / 𝑥𝐵 ∈ ℂ
12 csbeq1a 3527 . . . . . . . . . . . . . 14 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
1312eleq1d 2683 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝐵 ∈ ℂ ↔ 𝑦 / 𝑥𝐵 ∈ ℂ))
149, 11, 13cbvral 3158 . . . . . . . . . . . 12 (∀𝑥𝐴 𝐵 ∈ ℂ ↔ ∀𝑦𝐴 𝑦 / 𝑥𝐵 ∈ ℂ)
158, 14sylib 208 . . . . . . . . . . 11 (𝜑 → ∀𝑦𝐴 𝑦 / 𝑥𝐵 ∈ ℂ)
1615r19.21bi 2927 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵 ∈ ℂ)
17 nfcv 2761 . . . . . . . . . . . 12 𝑦𝐵
1817, 10, 12cbvmpt 4714 . . . . . . . . . . 11 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
1918, 2syl5eqelr 2703 . . . . . . . . . 10 (𝜑 → (𝑦𝐴𝑦 / 𝑥𝐵) ∈ 𝐿1)
20 itgabsnc.m2 . . . . . . . . . 10 (𝜑 → (𝑦𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ MblFn)
214, 16, 19, 20iblmulc2nc 33134 . . . . . . . . 9 (𝜑 → (𝑦𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ 𝐿1)
224adantr 481 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (∗‘∫𝐴𝐵 d𝑥) ∈ ℂ)
2322, 16mulcld 10011 . . . . . . . . . 10 ((𝜑𝑦𝐴) → ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) ∈ ℂ)
2423iblcn 23484 . . . . . . . . 9 (𝜑 → ((𝑦𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ 𝐿1 ↔ ((𝑦𝐴 ↦ (ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1 ∧ (𝑦𝐴 ↦ (ℑ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1)))
2521, 24mpbid 222 . . . . . . . 8 (𝜑 → ((𝑦𝐴 ↦ (ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1 ∧ (𝑦𝐴 ↦ (ℑ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1))
2625simpld 475 . . . . . . 7 (𝜑 → (𝑦𝐴 ↦ (ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1)
2722, 16absmuld 14134 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) = ((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘𝑦 / 𝑥𝐵)))
2827mpteq2dva 4709 . . . . . . . . . 10 (𝜑 → (𝑦𝐴 ↦ (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) = (𝑦𝐴 ↦ ((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘𝑦 / 𝑥𝐵))))
296, 1mbfdm2 23324 . . . . . . . . . . 11 (𝜑𝐴 ∈ dom vol)
3022abscld 14116 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (abs‘(∗‘∫𝐴𝐵 d𝑥)) ∈ ℝ)
3116abscld 14116 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (abs‘𝑦 / 𝑥𝐵) ∈ ℝ)
32 fconstmpt 5128 . . . . . . . . . . . 12 (𝐴 × {(abs‘(∗‘∫𝐴𝐵 d𝑥))}) = (𝑦𝐴 ↦ (abs‘(∗‘∫𝐴𝐵 d𝑥)))
3332a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴 × {(abs‘(∗‘∫𝐴𝐵 d𝑥))}) = (𝑦𝐴 ↦ (abs‘(∗‘∫𝐴𝐵 d𝑥))))
34 nfcv 2761 . . . . . . . . . . . . 13 𝑦(abs‘𝐵)
35 nfcv 2761 . . . . . . . . . . . . . 14 𝑥abs
3635, 10nffv 6160 . . . . . . . . . . . . 13 𝑥(abs‘𝑦 / 𝑥𝐵)
3712fveq2d 6157 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (abs‘𝐵) = (abs‘𝑦 / 𝑥𝐵))
3834, 36, 37cbvmpt 4714 . . . . . . . . . . . 12 (𝑥𝐴 ↦ (abs‘𝐵)) = (𝑦𝐴 ↦ (abs‘𝑦 / 𝑥𝐵))
3938a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) = (𝑦𝐴 ↦ (abs‘𝑦 / 𝑥𝐵)))
4029, 30, 31, 33, 39offval2 6874 . . . . . . . . . 10 (𝜑 → ((𝐴 × {(abs‘(∗‘∫𝐴𝐵 d𝑥))}) ∘𝑓 · (𝑥𝐴 ↦ (abs‘𝐵))) = (𝑦𝐴 ↦ ((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘𝑦 / 𝑥𝐵))))
4128, 40eqtr4d 2658 . . . . . . . . 9 (𝜑 → (𝑦𝐴 ↦ (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) = ((𝐴 × {(abs‘(∗‘∫𝐴𝐵 d𝑥))}) ∘𝑓 · (𝑥𝐴 ↦ (abs‘𝐵))))
42 itgabsnc.m1 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ MblFn)
434abscld 14116 . . . . . . . . . 10 (𝜑 → (abs‘(∗‘∫𝐴𝐵 d𝑥)) ∈ ℝ)
447abscld 14116 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
4544recnd 10019 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℂ)
46 eqid 2621 . . . . . . . . . . 11 (𝑥𝐴 ↦ (abs‘𝐵)) = (𝑥𝐴 ↦ (abs‘𝐵))
4745, 46fmptd 6346 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)):𝐴⟶ℂ)
4842, 43, 47mbfmulc2re 23334 . . . . . . . . 9 (𝜑 → ((𝐴 × {(abs‘(∗‘∫𝐴𝐵 d𝑥))}) ∘𝑓 · (𝑥𝐴 ↦ (abs‘𝐵))) ∈ MblFn)
4941, 48eqeltrd 2698 . . . . . . . 8 (𝜑 → (𝑦𝐴 ↦ (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ MblFn)
5023, 21, 49iblabsnc 33133 . . . . . . 7 (𝜑 → (𝑦𝐴 ↦ (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵))) ∈ 𝐿1)
5123recld 13875 . . . . . . 7 ((𝜑𝑦𝐴) → (ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ ℝ)
5223abscld 14116 . . . . . . 7 ((𝜑𝑦𝐴) → (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ∈ ℝ)
5323releabsd 14131 . . . . . . 7 ((𝜑𝑦𝐴) → (ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) ≤ (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)))
5426, 50, 51, 52, 53itgle 23495 . . . . . 6 (𝜑 → ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦 ≤ ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
553abscld 14116 . . . . . . . . 9 (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ)
5655recnd 10019 . . . . . . . 8 (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ∈ ℂ)
5756sqvald 12952 . . . . . . 7 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)))
583absvalsqd 14122 . . . . . . . . . 10 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = (∫𝐴𝐵 d𝑥 · (∗‘∫𝐴𝐵 d𝑥)))
593, 4mulcomd 10012 . . . . . . . . . 10 (𝜑 → (∫𝐴𝐵 d𝑥 · (∗‘∫𝐴𝐵 d𝑥)) = ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝐵 d𝑥))
6012, 17, 10cbvitg 23461 . . . . . . . . . . . 12 𝐴𝐵 d𝑥 = ∫𝐴𝑦 / 𝑥𝐵 d𝑦
6160oveq2i 6621 . . . . . . . . . . 11 ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝐵 d𝑥) = ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝑦 / 𝑥𝐵 d𝑦)
624, 16, 19, 20itgmulc2nc 33137 . . . . . . . . . . 11 (𝜑 → ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝑦 / 𝑥𝐵 d𝑦) = ∫𝐴((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) d𝑦)
6361, 62syl5eq 2667 . . . . . . . . . 10 (𝜑 → ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝐵 d𝑥) = ∫𝐴((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) d𝑦)
6458, 59, 633eqtrd 2659 . . . . . . . . 9 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = ∫𝐴((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) d𝑦)
6564fveq2d 6157 . . . . . . . 8 (𝜑 → (ℜ‘((abs‘∫𝐴𝐵 d𝑥)↑2)) = (ℜ‘∫𝐴((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) d𝑦))
6655resqcld 12982 . . . . . . . . 9 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) ∈ ℝ)
6766rered 13905 . . . . . . . 8 (𝜑 → (ℜ‘((abs‘∫𝐴𝐵 d𝑥)↑2)) = ((abs‘∫𝐴𝐵 d𝑥)↑2))
68 ovex 6638 . . . . . . . . . 10 ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) ∈ V
6968a1i 11 . . . . . . . . 9 ((𝜑𝑦𝐴) → ((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) ∈ V)
7069, 21itgre 23486 . . . . . . . 8 (𝜑 → (ℜ‘∫𝐴((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵) d𝑦) = ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
7165, 67, 703eqtr3d 2663 . . . . . . 7 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
7257, 71eqtr3d 2657 . . . . . 6 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) = ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
7337, 34, 36cbvitg 23461 . . . . . . . 8 𝐴(abs‘𝐵) d𝑥 = ∫𝐴(abs‘𝑦 / 𝑥𝐵) d𝑦
7473oveq2i 6621 . . . . . . 7 ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥) = ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝑦 / 𝑥𝐵) d𝑦)
751, 2, 42iblabsnc 33133 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (abs‘𝐵)) ∈ 𝐿1)
7638, 75syl5eqelr 2703 . . . . . . . . 9 (𝜑 → (𝑦𝐴 ↦ (abs‘𝑦 / 𝑥𝐵)) ∈ 𝐿1)
7755adantr 481 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ)
78 fconstmpt 5128 . . . . . . . . . . . 12 (𝐴 × {(abs‘∫𝐴𝐵 d𝑥)}) = (𝑦𝐴 ↦ (abs‘∫𝐴𝐵 d𝑥))
7978a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴 × {(abs‘∫𝐴𝐵 d𝑥)}) = (𝑦𝐴 ↦ (abs‘∫𝐴𝐵 d𝑥)))
8029, 77, 31, 79, 39offval2 6874 . . . . . . . . . 10 (𝜑 → ((𝐴 × {(abs‘∫𝐴𝐵 d𝑥)}) ∘𝑓 · (𝑥𝐴 ↦ (abs‘𝐵))) = (𝑦𝐴 ↦ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵))))
8142, 55, 47mbfmulc2re 23334 . . . . . . . . . 10 (𝜑 → ((𝐴 × {(abs‘∫𝐴𝐵 d𝑥)}) ∘𝑓 · (𝑥𝐴 ↦ (abs‘𝐵))) ∈ MblFn)
8280, 81eqeltrrd 2699 . . . . . . . . 9 (𝜑 → (𝑦𝐴 ↦ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵))) ∈ MblFn)
8356, 31, 76, 82itgmulc2nc 33137 . . . . . . . 8 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝑦 / 𝑥𝐵) d𝑦) = ∫𝐴((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵)) d𝑦)
843adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → ∫𝐴𝐵 d𝑥 ∈ ℂ)
8584abscjd 14130 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (abs‘(∗‘∫𝐴𝐵 d𝑥)) = (abs‘∫𝐴𝐵 d𝑥))
8685oveq1d 6625 . . . . . . . . . 10 ((𝜑𝑦𝐴) → ((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘𝑦 / 𝑥𝐵)) = ((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵)))
8727, 86eqtrd 2655 . . . . . . . . 9 ((𝜑𝑦𝐴) → (abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) = ((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵)))
8887itgeq2dv 23467 . . . . . . . 8 (𝜑 → ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦 = ∫𝐴((abs‘∫𝐴𝐵 d𝑥) · (abs‘𝑦 / 𝑥𝐵)) d𝑦)
8983, 88eqtr4d 2658 . . . . . . 7 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝑦 / 𝑥𝐵) d𝑦) = ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
9074, 89syl5eq 2667 . . . . . 6 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥) = ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · 𝑦 / 𝑥𝐵)) d𝑦)
9154, 72, 903brtr4d 4650 . . . . 5 (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥))
9291adantr 481 . . . 4 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥))
9355adantr 481 . . . . 5 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ)
9444, 75itgrecl 23483 . . . . . 6 (𝜑 → ∫𝐴(abs‘𝐵) d𝑥 ∈ ℝ)
9594adantr 481 . . . . 5 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → ∫𝐴(abs‘𝐵) d𝑥 ∈ ℝ)
96 simpr 477 . . . . 5 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → 0 < (abs‘∫𝐴𝐵 d𝑥))
97 lemul2 10827 . . . . 5 (((abs‘∫𝐴𝐵 d𝑥) ∈ ℝ ∧ ∫𝐴(abs‘𝐵) d𝑥 ∈ ℝ ∧ ((abs‘∫𝐴𝐵 d𝑥) ∈ ℝ ∧ 0 < (abs‘∫𝐴𝐵 d𝑥))) → ((abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥 ↔ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥)))
9893, 95, 93, 96, 97syl112anc 1327 . . . 4 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → ((abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥 ↔ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥)))
9992, 98mpbird 247 . . 3 ((𝜑 ∧ 0 < (abs‘∫𝐴𝐵 d𝑥)) → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥)
10099ex 450 . 2 (𝜑 → (0 < (abs‘∫𝐴𝐵 d𝑥) → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥))
1017absge0d 14124 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ (abs‘𝐵))
10275, 44, 101itgge0 23496 . . 3 (𝜑 → 0 ≤ ∫𝐴(abs‘𝐵) d𝑥)
103 breq1 4621 . . 3 (0 = (abs‘∫𝐴𝐵 d𝑥) → (0 ≤ ∫𝐴(abs‘𝐵) d𝑥 ↔ (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥))
104102, 103syl5ibcom 235 . 2 (𝜑 → (0 = (abs‘∫𝐴𝐵 d𝑥) → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥))
1053absge0d 14124 . . 3 (𝜑 → 0 ≤ (abs‘∫𝐴𝐵 d𝑥))
106 0re 9991 . . . 4 0 ∈ ℝ
107 leloe 10075 . . . 4 ((0 ∈ ℝ ∧ (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ) → (0 ≤ (abs‘∫𝐴𝐵 d𝑥) ↔ (0 < (abs‘∫𝐴𝐵 d𝑥) ∨ 0 = (abs‘∫𝐴𝐵 d𝑥))))
108106, 55, 107sylancr 694 . . 3 (𝜑 → (0 ≤ (abs‘∫𝐴𝐵 d𝑥) ↔ (0 < (abs‘∫𝐴𝐵 d𝑥) ∨ 0 = (abs‘∫𝐴𝐵 d𝑥))))
109105, 108mpbid 222 . 2 (𝜑 → (0 < (abs‘∫𝐴𝐵 d𝑥) ∨ 0 = (abs‘∫𝐴𝐵 d𝑥)))
110100, 104, 109mpjaod 396 1 (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wral 2907  Vcvv 3189  csb 3518  {csn 4153   class class class wbr 4618  cmpt 4678   × cxp 5077  dom cdm 5079  cfv 5852  (class class class)co 6610  𝑓 cof 6855  cc 9885  cr 9886  0cc0 9887   · cmul 9892   < clt 10025  cle 10026  2c2 11021  cexp 12807  ccj 13777  cre 13778  cim 13779  abscabs 13915  volcvol 23151  MblFncmbf 23302  𝐿1cibl 23305  citg 23306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965  ax-addf 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-disj 4589  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-ofr 6858  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-fi 8268  df-sup 8299  df-inf 8300  df-oi 8366  df-card 8716  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-n0 11244  df-z 11329  df-uz 11639  df-q 11740  df-rp 11784  df-xneg 11897  df-xadd 11898  df-xmul 11899  df-ioo 12128  df-ico 12130  df-icc 12131  df-fz 12276  df-fzo 12414  df-fl 12540  df-mod 12616  df-seq 12749  df-exp 12808  df-hash 13065  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-clim 14160  df-sum 14358  df-rest 16011  df-topgen 16032  df-psmet 19666  df-xmet 19667  df-met 19668  df-bl 19669  df-mopn 19670  df-top 20627  df-topon 20644  df-bases 20670  df-cmp 21109  df-ovol 23152  df-vol 23153  df-mbf 23307  df-itg1 23308  df-itg2 23309  df-ibl 23310  df-itg 23311  df-0p 23356
This theorem is referenced by:  ftc1cnnclem  33142  ftc2nc  33153
  Copyright terms: Public domain W3C validator