MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pclogsum Structured version   Visualization version   GIF version

Theorem pclogsum 25719
Description: The logarithmic analogue of pcprod 16221. The sum of the logarithms of the primes dividing 𝐴 multiplied by their powers yields the logarithm of 𝐴. (Contributed by Mario Carneiro, 15-Apr-2016.)
Assertion
Ref Expression
pclogsum (𝐴 ∈ ℕ → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)((𝑝 pCnt 𝐴) · (log‘𝑝)) = (log‘𝐴))
Distinct variable group:   𝐴,𝑝

Proof of Theorem pclogsum
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 4168 . . . . . 6 (𝑝 ∈ ((1...𝐴) ∩ ℙ) ↔ (𝑝 ∈ (1...𝐴) ∧ 𝑝 ∈ ℙ))
21baib 536 . . . . 5 (𝑝 ∈ (1...𝐴) → (𝑝 ∈ ((1...𝐴) ∩ ℙ) ↔ 𝑝 ∈ ℙ))
32ifbid 4487 . . . 4 (𝑝 ∈ (1...𝐴) → if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0) = if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0))
4 fvif 6680 . . . . 5 (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) = if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), (log‘1))
5 log1 25096 . . . . . 6 (log‘1) = 0
6 ifeq2 4470 . . . . . 6 ((log‘1) = 0 → if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), (log‘1)) = if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0))
75, 6ax-mp 5 . . . . 5 if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), (log‘1)) = if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0)
84, 7eqtri 2844 . . . 4 (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) = if(𝑝 ∈ ℙ, (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0)
93, 8syl6eqr 2874 . . 3 (𝑝 ∈ (1...𝐴) → if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0) = (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)))
109sumeq2i 15046 . 2 Σ𝑝 ∈ (1...𝐴)if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0) = Σ𝑝 ∈ (1...𝐴)(log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1))
11 inss1 4204 . . . 4 ((1...𝐴) ∩ ℙ) ⊆ (1...𝐴)
12 simpr 485 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ ((1...𝐴) ∩ ℙ))
1312elin1d 4174 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ (1...𝐴))
14 elfznn 12926 . . . . . . . . . 10 (𝑝 ∈ (1...𝐴) → 𝑝 ∈ ℕ)
1513, 14syl 17 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ ℕ)
1612elin2d 4175 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ)
17 simpl 483 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝐴 ∈ ℕ)
1816, 17pccld 16177 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (𝑝 pCnt 𝐴) ∈ ℕ0)
1915, 18nnexpcld 13596 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (𝑝↑(𝑝 pCnt 𝐴)) ∈ ℕ)
2019nnrpd 12419 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (𝑝↑(𝑝 pCnt 𝐴)) ∈ ℝ+)
2120relogcld 25133 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (log‘(𝑝↑(𝑝 pCnt 𝐴))) ∈ ℝ)
2221recnd 10658 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (log‘(𝑝↑(𝑝 pCnt 𝐴))) ∈ ℂ)
2322ralrimiva 3182 . . . 4 (𝐴 ∈ ℕ → ∀𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) ∈ ℂ)
24 fzfi 13330 . . . . . 6 (1...𝐴) ∈ Fin
2524olci 860 . . . . 5 ((1...𝐴) ⊆ (ℤ‘1) ∨ (1...𝐴) ∈ Fin)
26 sumss2 15073 . . . . 5 (((((1...𝐴) ∩ ℙ) ⊆ (1...𝐴) ∧ ∀𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) ∈ ℂ) ∧ ((1...𝐴) ⊆ (ℤ‘1) ∨ (1...𝐴) ∈ Fin)) → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) = Σ𝑝 ∈ (1...𝐴)if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0))
2725, 26mpan2 687 . . . 4 ((((1...𝐴) ∩ ℙ) ⊆ (1...𝐴) ∧ ∀𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) ∈ ℂ) → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) = Σ𝑝 ∈ (1...𝐴)if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0))
2811, 23, 27sylancr 587 . . 3 (𝐴 ∈ ℕ → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) = Σ𝑝 ∈ (1...𝐴)if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0))
2915nnrpd 12419 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ+)
3018nn0zd 12074 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (𝑝 pCnt 𝐴) ∈ ℤ)
31 relogexp 25106 . . . . 5 ((𝑝 ∈ ℝ+ ∧ (𝑝 pCnt 𝐴) ∈ ℤ) → (log‘(𝑝↑(𝑝 pCnt 𝐴))) = ((𝑝 pCnt 𝐴) · (log‘𝑝)))
3229, 30, 31syl2anc 584 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ((1...𝐴) ∩ ℙ)) → (log‘(𝑝↑(𝑝 pCnt 𝐴))) = ((𝑝 pCnt 𝐴) · (log‘𝑝)))
3332sumeq2dv 15050 . . 3 (𝐴 ∈ ℕ → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)(log‘(𝑝↑(𝑝 pCnt 𝐴))) = Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)((𝑝 pCnt 𝐴) · (log‘𝑝)))
3428, 33eqtr3d 2858 . 2 (𝐴 ∈ ℕ → Σ𝑝 ∈ (1...𝐴)if(𝑝 ∈ ((1...𝐴) ∩ ℙ), (log‘(𝑝↑(𝑝 pCnt 𝐴))), 0) = Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)((𝑝 pCnt 𝐴) · (log‘𝑝)))
3514adantl 482 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → 𝑝 ∈ ℕ)
36 eleq1w 2895 . . . . . . . 8 (𝑛 = 𝑝 → (𝑛 ∈ ℙ ↔ 𝑝 ∈ ℙ))
37 id 22 . . . . . . . . 9 (𝑛 = 𝑝𝑛 = 𝑝)
38 oveq1 7152 . . . . . . . . 9 (𝑛 = 𝑝 → (𝑛 pCnt 𝐴) = (𝑝 pCnt 𝐴))
3937, 38oveq12d 7163 . . . . . . . 8 (𝑛 = 𝑝 → (𝑛↑(𝑛 pCnt 𝐴)) = (𝑝↑(𝑝 pCnt 𝐴)))
4036, 39ifbieq1d 4488 . . . . . . 7 (𝑛 = 𝑝 → if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1) = if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1))
4140fveq2d 6668 . . . . . 6 (𝑛 = 𝑝 → (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)) = (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)))
42 eqid 2821 . . . . . 6 (𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))) = (𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))
43 fvex 6677 . . . . . 6 (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) ∈ V
4441, 42, 43fvmpt 6762 . . . . 5 (𝑝 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝑝) = (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)))
4535, 44syl 17 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝑝) = (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)))
46 elnnuz 12271 . . . . 5 (𝐴 ∈ ℕ ↔ 𝐴 ∈ (ℤ‘1))
4746biimpi 217 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ (ℤ‘1))
4835adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℕ)
49 simpr 485 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
50 simpll 763 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ)
5149, 50pccld 16177 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
5248, 51nnexpcld 13596 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ 𝑝 ∈ ℙ) → (𝑝↑(𝑝 pCnt 𝐴)) ∈ ℕ)
53 1nn 11638 . . . . . . . . 9 1 ∈ ℕ
5453a1i 11 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) ∧ ¬ 𝑝 ∈ ℙ) → 1 ∈ ℕ)
5552, 54ifclda 4499 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1) ∈ ℕ)
5655nnrpd 12419 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1) ∈ ℝ+)
5756relogcld 25133 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) ∈ ℝ)
5857recnd 10658 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) ∈ ℂ)
5945, 47, 58fsumser 15077 . . 3 (𝐴 ∈ ℕ → Σ𝑝 ∈ (1...𝐴)(log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) = (seq1( + , (𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))))‘𝐴))
60 rpmulcl 12402 . . . . 5 ((𝑝 ∈ ℝ+𝑚 ∈ ℝ+) → (𝑝 · 𝑚) ∈ ℝ+)
6160adantl 482 . . . 4 ((𝐴 ∈ ℕ ∧ (𝑝 ∈ ℝ+𝑚 ∈ ℝ+)) → (𝑝 · 𝑚) ∈ ℝ+)
62 eqid 2821 . . . . . . 7 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))
63 ovex 7178 . . . . . . . 8 (𝑝↑(𝑝 pCnt 𝐴)) ∈ V
64 1ex 10626 . . . . . . . 8 1 ∈ V
6563, 64ifex 4513 . . . . . . 7 if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1) ∈ V
6640, 62, 65fvmpt 6762 . . . . . 6 (𝑝 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))‘𝑝) = if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1))
6735, 66syl 17 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))‘𝑝) = if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1))
6867, 56eqeltrd 2913 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))‘𝑝) ∈ ℝ+)
69 relogmul 25102 . . . . 5 ((𝑝 ∈ ℝ+𝑚 ∈ ℝ+) → (log‘(𝑝 · 𝑚)) = ((log‘𝑝) + (log‘𝑚)))
7069adantl 482 . . . 4 ((𝐴 ∈ ℕ ∧ (𝑝 ∈ ℝ+𝑚 ∈ ℝ+)) → (log‘(𝑝 · 𝑚)) = ((log‘𝑝) + (log‘𝑚)))
7167fveq2d 6668 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → (log‘((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))‘𝑝)) = (log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)))
7271, 45eqtr4d 2859 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ (1...𝐴)) → (log‘((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))‘𝑝)) = ((𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝑝))
7361, 68, 47, 70, 72seqhomo 13407 . . 3 (𝐴 ∈ ℕ → (log‘(seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝐴)) = (seq1( + , (𝑛 ∈ ℕ ↦ (log‘if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1))))‘𝐴))
7462pcprod 16221 . . . 4 (𝐴 ∈ ℕ → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝐴) = 𝐴)
7574fveq2d 6668 . . 3 (𝐴 ∈ ℕ → (log‘(seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt 𝐴)), 1)))‘𝐴)) = (log‘𝐴))
7659, 73, 753eqtr2d 2862 . 2 (𝐴 ∈ ℕ → Σ𝑝 ∈ (1...𝐴)(log‘if(𝑝 ∈ ℙ, (𝑝↑(𝑝 pCnt 𝐴)), 1)) = (log‘𝐴))
7710, 34, 763eqtr3a 2880 1 (𝐴 ∈ ℕ → Σ𝑝 ∈ ((1...𝐴) ∩ ℙ)((𝑝 pCnt 𝐴) · (log‘𝑝)) = (log‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 841   = wceq 1528  wcel 2105  wral 3138  cin 3934  wss 3935  ifcif 4465  cmpt 5138  cfv 6349  (class class class)co 7145  Fincfn 8498  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cn 11627  cz 11970  cuz 12232  +crp 12379  ...cfz 12882  seqcseq 13359  cexp 13419  Σcsu 15032  cprime 16005   pCnt cpc 16163  logclog 25065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-map 8398  df-pm 8399  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-fi 8864  df-sup 8895  df-inf 8896  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-q 12338  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ioo 12732  df-ioc 12733  df-ico 12734  df-icc 12735  df-fz 12883  df-fzo 13024  df-fl 13152  df-mod 13228  df-seq 13360  df-exp 13420  df-fac 13624  df-bc 13653  df-hash 13681  df-shft 14416  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-limsup 14818  df-clim 14835  df-rlim 14836  df-sum 15033  df-ef 15411  df-sin 15413  df-cos 15414  df-pi 15416  df-dvds 15598  df-gcd 15834  df-prm 16006  df-pc 16164  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-starv 16570  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-hom 16579  df-cco 16580  df-rest 16686  df-topn 16687  df-0g 16705  df-gsum 16706  df-topgen 16707  df-pt 16708  df-prds 16711  df-xrs 16765  df-qtop 16770  df-imas 16771  df-xps 16773  df-mre 16847  df-mrc 16848  df-acs 16850  df-mgm 17842  df-sgrp 17891  df-mnd 17902  df-submnd 17947  df-mulg 18165  df-cntz 18387  df-cmn 18839  df-psmet 20467  df-xmet 20468  df-met 20469  df-bl 20470  df-mopn 20471  df-fbas 20472  df-fg 20473  df-cnfld 20476  df-top 21432  df-topon 21449  df-topsp 21471  df-bases 21484  df-cld 21557  df-ntr 21558  df-cls 21559  df-nei 21636  df-lp 21674  df-perf 21675  df-cn 21765  df-cnp 21766  df-haus 21853  df-tx 22100  df-hmeo 22293  df-fil 22384  df-fm 22476  df-flim 22477  df-flf 22478  df-xms 22859  df-ms 22860  df-tms 22861  df-cncf 23415  df-limc 24393  df-dv 24394  df-log 25067
This theorem is referenced by:  vmasum  25720  chebbnd1lem1  25973
  Copyright terms: Public domain W3C validator