MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxmet Structured version   Visualization version   GIF version

Theorem rrxmet 23099
Description: Euclidean space is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.) (Revised by Thierry Arnoux, 30-Jun-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0}
rrxmval.d 𝐷 = (dist‘(ℝ^‘𝐼))
Assertion
Ref Expression
rrxmet (𝐼𝑉𝐷 ∈ (Met‘𝑋))
Distinct variable groups:   ,𝐼   ,𝑉
Allowed substitution hints:   𝐷()   𝑋()

Proof of Theorem rrxmet
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxmval.1 . . . . . . . . 9 𝑋 = { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0}
2 simprl 793 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
31, 2rrxfsupp 23093 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 supp 0) ∈ Fin)
4 simprr 795 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
51, 4rrxfsupp 23093 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 supp 0) ∈ Fin)
6 unfi 8171 . . . . . . . 8 (((𝑥 supp 0) ∈ Fin ∧ (𝑦 supp 0) ∈ Fin) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ∈ Fin)
73, 5, 6syl2anc 692 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ∈ Fin)
81, 2rrxsuppss 23094 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 supp 0) ⊆ 𝐼)
91, 4rrxsuppss 23094 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 supp 0) ⊆ 𝐼)
108, 9unssd 3767 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ 𝐼)
1110sselda 3583 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))) → 𝑘𝐼)
121, 2rrxf 23092 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑥:𝐼⟶ℝ)
1312ffvelrnda 6315 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℝ)
141, 4rrxf 23092 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑦:𝐼⟶ℝ)
1514ffvelrnda 6315 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℝ)
1613, 15resubcld 10402 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑦𝑘)) ∈ ℝ)
1716resqcld 12975 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ)
1811, 17syldan 487 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))) → (((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ)
197, 18fsumrecl 14398 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ)
2016sqge0d 12976 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → 0 ≤ (((𝑥𝑘) − (𝑦𝑘))↑2))
2111, 20syldan 487 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))) → 0 ≤ (((𝑥𝑘) − (𝑦𝑘))↑2))
227, 18, 21fsumge0 14454 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))
2319, 22resqrtcld 14090 . . . . 5 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ)
2423ralrimivva 2965 . . . 4 (𝐼𝑉 → ∀𝑥𝑋𝑦𝑋 (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ)
25 eqid 2621 . . . . 5 (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
2625fmpt2 7182 . . . 4 (∀𝑥𝑋𝑦𝑋 (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ ↔ (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ)
2724, 26sylib 208 . . 3 (𝐼𝑉 → (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ)
28 rrxmval.d . . . . 5 𝐷 = (dist‘(ℝ^‘𝐼))
291, 28rrxmfval 23097 . . . 4 (𝐼𝑉𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))))
3029feq1d 5987 . . 3 (𝐼𝑉 → (𝐷:(𝑋 × 𝑋)⟶ℝ ↔ (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ))
3127, 30mpbird 247 . 2 (𝐼𝑉𝐷:(𝑋 × 𝑋)⟶ℝ)
32 sqrt00 13938 . . . . . . 7 ((Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) → ((√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
3319, 22, 32syl2anc 692 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
347, 18, 21fsum00 14457 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
3516recnd 10012 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑦𝑘)) ∈ ℂ)
36 sqeq0 12867 . . . . . . . . . 10 (((𝑥𝑘) − (𝑦𝑘)) ∈ ℂ → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ((𝑥𝑘) − (𝑦𝑘)) = 0))
3735, 36syl 17 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ((𝑥𝑘) − (𝑦𝑘)) = 0))
3813recnd 10012 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℂ)
3915recnd 10012 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℂ)
4038, 39subeq0ad 10346 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑦𝑘)) = 0 ↔ (𝑥𝑘) = (𝑦𝑘)))
4137, 40bitrd 268 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ (𝑥𝑘) = (𝑦𝑘)))
4211, 41syldan 487 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))) → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ (𝑥𝑘) = (𝑦𝑘)))
4342ralbidva 2979 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(𝑥𝑘) = (𝑦𝑘)))
4433, 34, 433bitrd 294 . . . . 5 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ ∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(𝑥𝑘) = (𝑦𝑘)))
451, 28rrxmval 23096 . . . . . . 7 ((𝐼𝑉𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
46453expb 1263 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
4746eqeq1d 2623 . . . . 5 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = 0))
4812ffnd 6003 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑥 Fn 𝐼)
4914ffnd 6003 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝑦 Fn 𝐼)
50 eqfnfv 6267 . . . . . . 7 ((𝑥 Fn 𝐼𝑦 Fn 𝐼) → (𝑥 = 𝑦 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
5148, 49, 50syl2anc 692 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 = 𝑦 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
52 ssun1 3754 . . . . . . . . . . 11 (𝑥 supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑦 supp 0))
5352a1i 11 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑦 supp 0)))
54 simpl 473 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 𝐼𝑉)
55 0red 9985 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → 0 ∈ ℝ)
5612, 53, 54, 55suppssr 7271 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ (𝐼 ∖ ((𝑥 supp 0) ∪ (𝑦 supp 0)))) → (𝑥𝑘) = 0)
57 ssun2 3755 . . . . . . . . . . 11 (𝑦 supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑦 supp 0))
5857a1i 11 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 supp 0) ⊆ ((𝑥 supp 0) ∪ (𝑦 supp 0)))
5914, 58, 54, 55suppssr 7271 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ (𝐼 ∖ ((𝑥 supp 0) ∪ (𝑦 supp 0)))) → (𝑦𝑘) = 0)
6056, 59eqtr4d 2658 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘 ∈ (𝐼 ∖ ((𝑥 supp 0) ∪ (𝑦 supp 0)))) → (𝑥𝑘) = (𝑦𝑘))
6160ralrimiva 2960 . . . . . . 7 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ∀𝑘 ∈ (𝐼 ∖ ((𝑥 supp 0) ∪ (𝑦 supp 0)))(𝑥𝑘) = (𝑦𝑘))
6210, 61raldifeq 4031 . . . . . 6 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(𝑥𝑘) = (𝑦𝑘) ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
6351, 62bitr4d 271 . . . . 5 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 = 𝑦 ↔ ∀𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(𝑥𝑘) = (𝑦𝑘)))
6444, 47, 633bitr4d 300 . . . 4 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
6573adant2 1078 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ∈ Fin)
66 simp2 1060 . . . . . . . . . . . 12 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → 𝑧𝑋)
671, 66rrxfsupp 23093 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧 supp 0) ∈ Fin)
68 unfi 8171 . . . . . . . . . . 11 ((((𝑥 supp 0) ∪ (𝑦 supp 0)) ∈ Fin ∧ (𝑧 supp 0) ∈ Fin) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ∈ Fin)
6965, 67, 68syl2anc 692 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ∈ Fin)
70693expa 1262 . . . . . . . . 9 (((𝐼𝑉𝑧𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ∈ Fin)
7170an32s 845 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ∈ Fin)
7210adantr 481 . . . . . . . . . . 11 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ 𝐼)
73 simpr 477 . . . . . . . . . . . 12 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧𝑋)
741, 73rrxsuppss 23094 . . . . . . . . . . 11 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑧 supp 0) ⊆ 𝐼)
7572, 74unssd 3767 . . . . . . . . . 10 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ⊆ 𝐼)
7675sselda 3583 . . . . . . . . 9 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → 𝑘𝐼)
7713adantlr 750 . . . . . . . . . 10 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℝ)
781, 73rrxf 23092 . . . . . . . . . . 11 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧:𝐼⟶ℝ)
7978ffvelrnda 6315 . . . . . . . . . 10 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑧𝑘) ∈ ℝ)
8077, 79resubcld 10402 . . . . . . . . 9 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑧𝑘)) ∈ ℝ)
8176, 80syldan 487 . . . . . . . 8 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → ((𝑥𝑘) − (𝑧𝑘)) ∈ ℝ)
8215adantlr 750 . . . . . . . . . 10 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℝ)
8379, 82resubcld 10402 . . . . . . . . 9 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((𝑧𝑘) − (𝑦𝑘)) ∈ ℝ)
8476, 83syldan 487 . . . . . . . 8 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → ((𝑧𝑘) − (𝑦𝑘)) ∈ ℝ)
8571, 81, 84trirn 23091 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2)) ≤ ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑧𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
8638adantlr 750 . . . . . . . . . . . 12 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℂ)
8779recnd 10012 . . . . . . . . . . . 12 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑧𝑘) ∈ ℂ)
8839adantlr 750 . . . . . . . . . . . 12 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℂ)
8986, 87, 88npncand 10360 . . . . . . . . . . 11 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘))) = ((𝑥𝑘) − (𝑦𝑘)))
9089oveq1d 6619 . . . . . . . . . 10 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2) = (((𝑥𝑘) − (𝑦𝑘))↑2))
9176, 90syldan 487 . . . . . . . . 9 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2) = (((𝑥𝑘) − (𝑦𝑘))↑2))
9291sumeq2dv 14367 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))
9392fveq2d 6152 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
94 sqsubswap 12864 . . . . . . . . . . . 12 (((𝑥𝑘) ∈ ℂ ∧ (𝑧𝑘) ∈ ℂ) → (((𝑥𝑘) − (𝑧𝑘))↑2) = (((𝑧𝑘) − (𝑥𝑘))↑2))
9586, 87, 94syl2anc 692 . . . . . . . . . . 11 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑧𝑘))↑2) = (((𝑧𝑘) − (𝑥𝑘))↑2))
9676, 95syldan 487 . . . . . . . . . 10 ((((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))) → (((𝑥𝑘) − (𝑧𝑘))↑2) = (((𝑧𝑘) − (𝑥𝑘))↑2))
9796sumeq2dv 14367 . . . . . . . . 9 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑧𝑘))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2))
9897fveq2d 6152 . . . . . . . 8 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑧𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)))
9998oveq1d 6619 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑧𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
10085, 93, 993brtr3d 4644 . . . . . 6 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) ≤ ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
10146adantr 481 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑥𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
102 simp1 1059 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → 𝐼𝑉)
10323adant2 1078 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
10443adant2 1078 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
1051, 103rrxsuppss 23094 . . . . . . . . . . . . 13 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 supp 0) ⊆ 𝐼)
1061, 104rrxsuppss 23094 . . . . . . . . . . . . 13 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 supp 0) ⊆ 𝐼)
107105, 106unssd 3767 . . . . . . . . . . . 12 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ 𝐼)
1081, 66rrxsuppss 23094 . . . . . . . . . . . 12 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧 supp 0) ⊆ 𝐼)
109107, 108unssd 3767 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)) ⊆ 𝐼)
110 ssun1 3754 . . . . . . . . . . . 12 ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))
111110a1i 11 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 supp 0) ∪ (𝑦 supp 0)) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
1121, 28, 102, 103, 104, 109, 69, 111rrxmetlem 23098 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2))
113112fveq2d 6152 . . . . . . . . 9 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
1141133expa 1262 . . . . . . . 8 (((𝐼𝑉𝑧𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
115114an32s 845 . . . . . . 7 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘 ∈ ((𝑥 supp 0) ∪ (𝑦 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
116101, 115eqtrd 2655 . . . . . 6 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑥𝐷𝑦) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑥𝑘) − (𝑦𝑘))↑2)))
1171, 28rrxmval 23096 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋𝑥𝑋) → (𝑧𝐷𝑥) = (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)))
1181173adant3r 1320 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧𝐷𝑥) = (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)))
1191, 28rrxmval 23096 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋𝑦𝑋) → (𝑧𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2)))
1201193adant3l 1319 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧𝐷𝑦) = (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2)))
121118, 120oveq12d 6622 . . . . . . . . 9 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
122 ssun2 3755 . . . . . . . . . . . . . 14 (𝑧 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))
123122a1i 11 . . . . . . . . . . . . 13 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
12452, 110sstri 3592 . . . . . . . . . . . . . 14 (𝑥 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))
125124a1i 11 . . . . . . . . . . . . 13 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
126123, 125unssd 3767 . . . . . . . . . . . 12 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧 supp 0) ∪ (𝑥 supp 0)) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
1271, 28, 102, 66, 103, 109, 69, 126rrxmetlem 23098 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2))
128127fveq2d 6152 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)))
12957, 110sstri 3592 . . . . . . . . . . . . . 14 (𝑦 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))
130129a1i 11 . . . . . . . . . . . . 13 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 supp 0) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
131123, 130unssd 3767 . . . . . . . . . . . 12 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧 supp 0) ∪ (𝑦 supp 0)) ⊆ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0)))
1321, 28, 102, 66, 104, 109, 69, 131rrxmetlem 23098 . . . . . . . . . . 11 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2) = Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))
133132fveq2d 6152 . . . . . . . . . 10 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2)) = (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2)))
134128, 133oveq12d 6622 . . . . . . . . 9 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑥 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ ((𝑧 supp 0) ∪ (𝑦 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
135121, 134eqtrd 2655 . . . . . . . 8 ((𝐼𝑉𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
1361353expa 1262 . . . . . . 7 (((𝐼𝑉𝑧𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
137136an32s 845 . . . . . 6 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘 ∈ (((𝑥 supp 0) ∪ (𝑦 supp 0)) ∪ (𝑧 supp 0))(((𝑧𝑘) − (𝑦𝑘))↑2))))
138100, 116, 1373brtr4d 4645 . . . . 5 (((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
139138ralrimiva 2960 . . . 4 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
14064, 139jca 554 . . 3 ((𝐼𝑉 ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))
141140ralrimivva 2965 . 2 (𝐼𝑉 → ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))
142 ovex 6632 . . . 4 (ℝ ↑𝑚 𝐼) ∈ V
1431, 142rabex2 4775 . . 3 𝑋 ∈ V
144 ismet 22038 . . 3 (𝑋 ∈ V → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))))
145143, 144ax-mp 5 . 2 (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))
14631, 141, 145sylanbrc 697 1 (𝐼𝑉𝐷 ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  {crab 2911  Vcvv 3186  cdif 3552  cun 3553  wss 3555   class class class wbr 4613   × cxp 5072   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  cmpt2 6606   supp csupp 7240  𝑚 cmap 7802  Fincfn 7899   finSupp cfsupp 8219  cc 9878  cr 9879  0cc0 9880   + caddc 9883  cle 10019  cmin 10210  2c2 11014  cexp 12800  csqrt 13907  Σcsu 14350  distcds 15871  Metcme 19651  ℝ^crrx 23079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-rp 11777  df-ico 12123  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-0g 16023  df-gsum 16024  df-prds 16029  df-pws 16031  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-grp 17346  df-minusg 17347  df-sbg 17348  df-subg 17512  df-ghm 17579  df-cntz 17671  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-dvr 18604  df-rnghom 18636  df-drng 18670  df-field 18671  df-subrg 18699  df-staf 18766  df-srng 18767  df-lmod 18786  df-lss 18852  df-sra 19091  df-rgmod 19092  df-met 19659  df-cnfld 19666  df-refld 19870  df-dsmm 19995  df-frlm 20010  df-nm 22297  df-tng 22299  df-tch 22877  df-rrx 23081
This theorem is referenced by:  rrxdstprj1  23100  rrxmetfi  39811
  Copyright terms: Public domain W3C validator