ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndinl Unicode version

Theorem 2ndinl 7136
Description: The second component of the value of a left injection is its argument. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
2ndinl  |-  ( X  e.  V  ->  ( 2nd `  (inl `  X
) )  =  X )

Proof of Theorem 2ndinl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-inl 7108 . . . . 5  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
21a1i 9 . . . 4  |-  ( X  e.  V  -> inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
)
3 opeq2 3806 . . . . 5  |-  ( x  =  X  ->  <. (/) ,  x >.  =  <. (/) ,  X >. )
43adantl 277 . . . 4  |-  ( ( X  e.  V  /\  x  =  X )  -> 
<. (/) ,  x >.  = 
<. (/) ,  X >. )
5 elex 2771 . . . 4  |-  ( X  e.  V  ->  X  e.  _V )
6 0ex 4157 . . . . 5  |-  (/)  e.  _V
7 opexg 4258 . . . . 5  |-  ( (
(/)  e.  _V  /\  X  e.  V )  ->  <. (/) ,  X >.  e.  _V )
86, 7mpan 424 . . . 4  |-  ( X  e.  V  ->  <. (/) ,  X >.  e.  _V )
92, 4, 5, 8fvmptd 5639 . . 3  |-  ( X  e.  V  ->  (inl `  X )  =  <. (/)
,  X >. )
109fveq2d 5559 . 2  |-  ( X  e.  V  ->  ( 2nd `  (inl `  X
) )  =  ( 2nd `  <. (/) ,  X >. ) )
11 op2ndg 6206 . . 3  |-  ( (
(/)  e.  _V  /\  X  e.  V )  ->  ( 2nd `  <. (/) ,  X >. )  =  X )
126, 11mpan 424 . 2  |-  ( X  e.  V  ->  ( 2nd `  <. (/) ,  X >. )  =  X )
1310, 12eqtrd 2226 1  |-  ( X  e.  V  ->  ( 2nd `  (inl `  X
) )  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   _Vcvv 2760   (/)c0 3447   <.cop 3622    |-> cmpt 4091   ` cfv 5255   2ndc2nd 6194  inlcinl 7106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fv 5263  df-2nd 6196  df-inl 7108
This theorem is referenced by:  updjudhcoinlf  7141
  Copyright terms: Public domain W3C validator