ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndinl Unicode version

Theorem 2ndinl 7052
Description: The second component of the value of a left injection is its argument. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
2ndinl  |-  ( X  e.  V  ->  ( 2nd `  (inl `  X
) )  =  X )

Proof of Theorem 2ndinl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-inl 7024 . . . . 5  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
21a1i 9 . . . 4  |-  ( X  e.  V  -> inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
)
3 opeq2 3766 . . . . 5  |-  ( x  =  X  ->  <. (/) ,  x >.  =  <. (/) ,  X >. )
43adantl 275 . . . 4  |-  ( ( X  e.  V  /\  x  =  X )  -> 
<. (/) ,  x >.  = 
<. (/) ,  X >. )
5 elex 2741 . . . 4  |-  ( X  e.  V  ->  X  e.  _V )
6 0ex 4116 . . . . 5  |-  (/)  e.  _V
7 opexg 4213 . . . . 5  |-  ( (
(/)  e.  _V  /\  X  e.  V )  ->  <. (/) ,  X >.  e.  _V )
86, 7mpan 422 . . . 4  |-  ( X  e.  V  ->  <. (/) ,  X >.  e.  _V )
92, 4, 5, 8fvmptd 5577 . . 3  |-  ( X  e.  V  ->  (inl `  X )  =  <. (/)
,  X >. )
109fveq2d 5500 . 2  |-  ( X  e.  V  ->  ( 2nd `  (inl `  X
) )  =  ( 2nd `  <. (/) ,  X >. ) )
11 op2ndg 6130 . . 3  |-  ( (
(/)  e.  _V  /\  X  e.  V )  ->  ( 2nd `  <. (/) ,  X >. )  =  X )
126, 11mpan 422 . 2  |-  ( X  e.  V  ->  ( 2nd `  <. (/) ,  X >. )  =  X )
1310, 12eqtrd 2203 1  |-  ( X  e.  V  ->  ( 2nd `  (inl `  X
) )  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   _Vcvv 2730   (/)c0 3414   <.cop 3586    |-> cmpt 4050   ` cfv 5198   2ndc2nd 6118  inlcinl 7022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fv 5206  df-2nd 6120  df-inl 7024
This theorem is referenced by:  updjudhcoinlf  7057
  Copyright terms: Public domain W3C validator