ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndinl Unicode version

Theorem 2ndinl 7076
Description: The second component of the value of a left injection is its argument. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
2ndinl  |-  ( X  e.  V  ->  ( 2nd `  (inl `  X
) )  =  X )

Proof of Theorem 2ndinl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-inl 7048 . . . . 5  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
21a1i 9 . . . 4  |-  ( X  e.  V  -> inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
)
3 opeq2 3781 . . . . 5  |-  ( x  =  X  ->  <. (/) ,  x >.  =  <. (/) ,  X >. )
43adantl 277 . . . 4  |-  ( ( X  e.  V  /\  x  =  X )  -> 
<. (/) ,  x >.  = 
<. (/) ,  X >. )
5 elex 2750 . . . 4  |-  ( X  e.  V  ->  X  e.  _V )
6 0ex 4132 . . . . 5  |-  (/)  e.  _V
7 opexg 4230 . . . . 5  |-  ( (
(/)  e.  _V  /\  X  e.  V )  ->  <. (/) ,  X >.  e.  _V )
86, 7mpan 424 . . . 4  |-  ( X  e.  V  ->  <. (/) ,  X >.  e.  _V )
92, 4, 5, 8fvmptd 5599 . . 3  |-  ( X  e.  V  ->  (inl `  X )  =  <. (/)
,  X >. )
109fveq2d 5521 . 2  |-  ( X  e.  V  ->  ( 2nd `  (inl `  X
) )  =  ( 2nd `  <. (/) ,  X >. ) )
11 op2ndg 6154 . . 3  |-  ( (
(/)  e.  _V  /\  X  e.  V )  ->  ( 2nd `  <. (/) ,  X >. )  =  X )
126, 11mpan 424 . 2  |-  ( X  e.  V  ->  ( 2nd `  <. (/) ,  X >. )  =  X )
1310, 12eqtrd 2210 1  |-  ( X  e.  V  ->  ( 2nd `  (inl `  X
) )  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   _Vcvv 2739   (/)c0 3424   <.cop 3597    |-> cmpt 4066   ` cfv 5218   2ndc2nd 6142  inlcinl 7046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fv 5226  df-2nd 6144  df-inl 7048
This theorem is referenced by:  updjudhcoinlf  7081
  Copyright terms: Public domain W3C validator