ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndinl Unicode version

Theorem 2ndinl 7064
Description: The second component of the value of a left injection is its argument. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
2ndinl  |-  ( X  e.  V  ->  ( 2nd `  (inl `  X
) )  =  X )

Proof of Theorem 2ndinl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-inl 7036 . . . . 5  |- inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
21a1i 9 . . . 4  |-  ( X  e.  V  -> inl  =  ( x  e.  _V  |->  <. (/)
,  x >. )
)
3 opeq2 3775 . . . . 5  |-  ( x  =  X  ->  <. (/) ,  x >.  =  <. (/) ,  X >. )
43adantl 277 . . . 4  |-  ( ( X  e.  V  /\  x  =  X )  -> 
<. (/) ,  x >.  = 
<. (/) ,  X >. )
5 elex 2746 . . . 4  |-  ( X  e.  V  ->  X  e.  _V )
6 0ex 4125 . . . . 5  |-  (/)  e.  _V
7 opexg 4222 . . . . 5  |-  ( (
(/)  e.  _V  /\  X  e.  V )  ->  <. (/) ,  X >.  e.  _V )
86, 7mpan 424 . . . 4  |-  ( X  e.  V  ->  <. (/) ,  X >.  e.  _V )
92, 4, 5, 8fvmptd 5589 . . 3  |-  ( X  e.  V  ->  (inl `  X )  =  <. (/)
,  X >. )
109fveq2d 5511 . 2  |-  ( X  e.  V  ->  ( 2nd `  (inl `  X
) )  =  ( 2nd `  <. (/) ,  X >. ) )
11 op2ndg 6142 . . 3  |-  ( (
(/)  e.  _V  /\  X  e.  V )  ->  ( 2nd `  <. (/) ,  X >. )  =  X )
126, 11mpan 424 . 2  |-  ( X  e.  V  ->  ( 2nd `  <. (/) ,  X >. )  =  X )
1310, 12eqtrd 2208 1  |-  ( X  e.  V  ->  ( 2nd `  (inl `  X
) )  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2146   _Vcvv 2735   (/)c0 3420   <.cop 3592    |-> cmpt 4059   ` cfv 5208   2ndc2nd 6130  inlcinl 7034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-iota 5170  df-fun 5210  df-fv 5216  df-2nd 6132  df-inl 7036
This theorem is referenced by:  updjudhcoinlf  7069
  Copyright terms: Public domain W3C validator