| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ndinl | GIF version | ||
| Description: The second component of the value of a left injection is its argument. (Contributed by AV, 27-Jun-2022.) |
| Ref | Expression |
|---|---|
| 2ndinl | ⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inl‘𝑋)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inl 7202 | . . . . 5 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
| 2 | 1 | a1i 9 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉)) |
| 3 | opeq2 3857 | . . . . 5 ⊢ (𝑥 = 𝑋 → 〈∅, 𝑥〉 = 〈∅, 𝑋〉) | |
| 4 | 3 | adantl 277 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑥 = 𝑋) → 〈∅, 𝑥〉 = 〈∅, 𝑋〉) |
| 5 | elex 2811 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
| 6 | 0ex 4210 | . . . . 5 ⊢ ∅ ∈ V | |
| 7 | opexg 4313 | . . . . 5 ⊢ ((∅ ∈ V ∧ 𝑋 ∈ 𝑉) → 〈∅, 𝑋〉 ∈ V) | |
| 8 | 6, 7 | mpan 424 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 〈∅, 𝑋〉 ∈ V) |
| 9 | 2, 4, 5, 8 | fvmptd 5708 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (inl‘𝑋) = 〈∅, 𝑋〉) |
| 10 | 9 | fveq2d 5627 | . 2 ⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inl‘𝑋)) = (2nd ‘〈∅, 𝑋〉)) |
| 11 | op2ndg 6287 | . . 3 ⊢ ((∅ ∈ V ∧ 𝑋 ∈ 𝑉) → (2nd ‘〈∅, 𝑋〉) = 𝑋) | |
| 12 | 6, 11 | mpan 424 | . 2 ⊢ (𝑋 ∈ 𝑉 → (2nd ‘〈∅, 𝑋〉) = 𝑋) |
| 13 | 10, 12 | eqtrd 2262 | 1 ⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inl‘𝑋)) = 𝑋) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∅c0 3491 〈cop 3669 ↦ cmpt 4144 ‘cfv 5314 2nd c2nd 6275 inlcinl 7200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-iota 5274 df-fun 5316 df-fv 5322 df-2nd 6277 df-inl 7202 |
| This theorem is referenced by: updjudhcoinlf 7235 |
| Copyright terms: Public domain | W3C validator |