| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ndinl | GIF version | ||
| Description: The second component of the value of a left injection is its argument. (Contributed by AV, 27-Jun-2022.) |
| Ref | Expression |
|---|---|
| 2ndinl | ⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inl‘𝑋)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inl 7161 | . . . . 5 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
| 2 | 1 | a1i 9 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉)) |
| 3 | opeq2 3823 | . . . . 5 ⊢ (𝑥 = 𝑋 → 〈∅, 𝑥〉 = 〈∅, 𝑋〉) | |
| 4 | 3 | adantl 277 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑥 = 𝑋) → 〈∅, 𝑥〉 = 〈∅, 𝑋〉) |
| 5 | elex 2785 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
| 6 | 0ex 4176 | . . . . 5 ⊢ ∅ ∈ V | |
| 7 | opexg 4277 | . . . . 5 ⊢ ((∅ ∈ V ∧ 𝑋 ∈ 𝑉) → 〈∅, 𝑋〉 ∈ V) | |
| 8 | 6, 7 | mpan 424 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 〈∅, 𝑋〉 ∈ V) |
| 9 | 2, 4, 5, 8 | fvmptd 5670 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (inl‘𝑋) = 〈∅, 𝑋〉) |
| 10 | 9 | fveq2d 5590 | . 2 ⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inl‘𝑋)) = (2nd ‘〈∅, 𝑋〉)) |
| 11 | op2ndg 6247 | . . 3 ⊢ ((∅ ∈ V ∧ 𝑋 ∈ 𝑉) → (2nd ‘〈∅, 𝑋〉) = 𝑋) | |
| 12 | 6, 11 | mpan 424 | . 2 ⊢ (𝑋 ∈ 𝑉 → (2nd ‘〈∅, 𝑋〉) = 𝑋) |
| 13 | 10, 12 | eqtrd 2239 | 1 ⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inl‘𝑋)) = 𝑋) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∅c0 3462 〈cop 3638 ↦ cmpt 4110 ‘cfv 5277 2nd c2nd 6235 inlcinl 7159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-iota 5238 df-fun 5279 df-fv 5285 df-2nd 6237 df-inl 7161 |
| This theorem is referenced by: updjudhcoinlf 7194 |
| Copyright terms: Public domain | W3C validator |