ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stinr Unicode version

Theorem 1stinr 7077
Description: The first component of the value of a right injection is 
1o. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
1stinr  |-  ( X  e.  V  ->  ( 1st `  (inr `  X
) )  =  1o )

Proof of Theorem 1stinr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-inr 7049 . . . . 5  |- inr  =  ( x  e.  _V  |->  <. 1o ,  x >. )
21a1i 9 . . . 4  |-  ( X  e.  V  -> inr  =  ( x  e.  _V  |->  <. 1o ,  x >. ) )
3 opeq2 3781 . . . . 5  |-  ( x  =  X  ->  <. 1o ,  x >.  =  <. 1o ,  X >. )
43adantl 277 . . . 4  |-  ( ( X  e.  V  /\  x  =  X )  -> 
<. 1o ,  x >.  = 
<. 1o ,  X >. )
5 elex 2750 . . . 4  |-  ( X  e.  V  ->  X  e.  _V )
6 1on 6426 . . . . 5  |-  1o  e.  On
7 opexg 4230 . . . . 5  |-  ( ( 1o  e.  On  /\  X  e.  V )  -> 
<. 1o ,  X >.  e. 
_V )
86, 7mpan 424 . . . 4  |-  ( X  e.  V  ->  <. 1o ,  X >.  e.  _V )
92, 4, 5, 8fvmptd 5599 . . 3  |-  ( X  e.  V  ->  (inr `  X )  =  <. 1o ,  X >. )
109fveq2d 5521 . 2  |-  ( X  e.  V  ->  ( 1st `  (inr `  X
) )  =  ( 1st `  <. 1o ,  X >. ) )
11 op1stg 6153 . . 3  |-  ( ( 1o  e.  On  /\  X  e.  V )  ->  ( 1st `  <. 1o ,  X >. )  =  1o )
126, 11mpan 424 . 2  |-  ( X  e.  V  ->  ( 1st `  <. 1o ,  X >. )  =  1o )
1310, 12eqtrd 2210 1  |-  ( X  e.  V  ->  ( 1st `  (inr `  X
) )  =  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   _Vcvv 2739   <.cop 3597    |-> cmpt 4066   Oncon0 4365   ` cfv 5218   1stc1st 6141   1oc1o 6412  inrcinr 7047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fv 5226  df-1st 6143  df-1o 6419  df-inr 7049
This theorem is referenced by:  djune  7079  updjudhcoinrg  7082
  Copyright terms: Public domain W3C validator