ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stinr Unicode version

Theorem 1stinr 7135
Description: The first component of the value of a right injection is 
1o. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
1stinr  |-  ( X  e.  V  ->  ( 1st `  (inr `  X
) )  =  1o )

Proof of Theorem 1stinr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-inr 7107 . . . . 5  |- inr  =  ( x  e.  _V  |->  <. 1o ,  x >. )
21a1i 9 . . . 4  |-  ( X  e.  V  -> inr  =  ( x  e.  _V  |->  <. 1o ,  x >. ) )
3 opeq2 3805 . . . . 5  |-  ( x  =  X  ->  <. 1o ,  x >.  =  <. 1o ,  X >. )
43adantl 277 . . . 4  |-  ( ( X  e.  V  /\  x  =  X )  -> 
<. 1o ,  x >.  = 
<. 1o ,  X >. )
5 elex 2771 . . . 4  |-  ( X  e.  V  ->  X  e.  _V )
6 1on 6476 . . . . 5  |-  1o  e.  On
7 opexg 4257 . . . . 5  |-  ( ( 1o  e.  On  /\  X  e.  V )  -> 
<. 1o ,  X >.  e. 
_V )
86, 7mpan 424 . . . 4  |-  ( X  e.  V  ->  <. 1o ,  X >.  e.  _V )
92, 4, 5, 8fvmptd 5638 . . 3  |-  ( X  e.  V  ->  (inr `  X )  =  <. 1o ,  X >. )
109fveq2d 5558 . 2  |-  ( X  e.  V  ->  ( 1st `  (inr `  X
) )  =  ( 1st `  <. 1o ,  X >. ) )
11 op1stg 6203 . . 3  |-  ( ( 1o  e.  On  /\  X  e.  V )  ->  ( 1st `  <. 1o ,  X >. )  =  1o )
126, 11mpan 424 . 2  |-  ( X  e.  V  ->  ( 1st `  <. 1o ,  X >. )  =  1o )
1310, 12eqtrd 2226 1  |-  ( X  e.  V  ->  ( 1st `  (inr `  X
) )  =  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   _Vcvv 2760   <.cop 3621    |-> cmpt 4090   Oncon0 4394   ` cfv 5254   1stc1st 6191   1oc1o 6462  inrcinr 7105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fv 5262  df-1st 6193  df-1o 6469  df-inr 7107
This theorem is referenced by:  djune  7137  updjudhcoinrg  7140
  Copyright terms: Public domain W3C validator