ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stinr Unicode version

Theorem 1stinr 7243
Description: The first component of the value of a right injection is 
1o. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
1stinr  |-  ( X  e.  V  ->  ( 1st `  (inr `  X
) )  =  1o )

Proof of Theorem 1stinr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-inr 7215 . . . . 5  |- inr  =  ( x  e.  _V  |->  <. 1o ,  x >. )
21a1i 9 . . . 4  |-  ( X  e.  V  -> inr  =  ( x  e.  _V  |->  <. 1o ,  x >. ) )
3 opeq2 3858 . . . . 5  |-  ( x  =  X  ->  <. 1o ,  x >.  =  <. 1o ,  X >. )
43adantl 277 . . . 4  |-  ( ( X  e.  V  /\  x  =  X )  -> 
<. 1o ,  x >.  = 
<. 1o ,  X >. )
5 elex 2811 . . . 4  |-  ( X  e.  V  ->  X  e.  _V )
6 1on 6569 . . . . 5  |-  1o  e.  On
7 opexg 4314 . . . . 5  |-  ( ( 1o  e.  On  /\  X  e.  V )  -> 
<. 1o ,  X >.  e. 
_V )
86, 7mpan 424 . . . 4  |-  ( X  e.  V  ->  <. 1o ,  X >.  e.  _V )
92, 4, 5, 8fvmptd 5715 . . 3  |-  ( X  e.  V  ->  (inr `  X )  =  <. 1o ,  X >. )
109fveq2d 5631 . 2  |-  ( X  e.  V  ->  ( 1st `  (inr `  X
) )  =  ( 1st `  <. 1o ,  X >. ) )
11 op1stg 6296 . . 3  |-  ( ( 1o  e.  On  /\  X  e.  V )  ->  ( 1st `  <. 1o ,  X >. )  =  1o )
126, 11mpan 424 . 2  |-  ( X  e.  V  ->  ( 1st `  <. 1o ,  X >. )  =  1o )
1310, 12eqtrd 2262 1  |-  ( X  e.  V  ->  ( 1st `  (inr `  X
) )  =  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799   <.cop 3669    |-> cmpt 4145   Oncon0 4454   ` cfv 5318   1stc1st 6284   1oc1o 6555  inrcinr 7213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fv 5326  df-1st 6286  df-1o 6562  df-inr 7215
This theorem is referenced by:  djune  7245  updjudhcoinrg  7248
  Copyright terms: Public domain W3C validator