| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulextsr1 | Unicode version | ||
| Description: Strong extensionality of multiplication of signed reals. (Contributed by Jim Kingdon, 18-Feb-2020.) |
| Ref | Expression |
|---|---|
| mulextsr1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 7910 |
. 2
| |
| 2 | oveq1 6007 |
. . . 4
| |
| 3 | 2 | breq1d 4092 |
. . 3
|
| 4 | breq1 4085 |
. . . 4
| |
| 5 | breq2 4086 |
. . . 4
| |
| 6 | 4, 5 | orbi12d 798 |
. . 3
|
| 7 | 3, 6 | imbi12d 234 |
. 2
|
| 8 | oveq1 6007 |
. . . 4
| |
| 9 | 8 | breq2d 4094 |
. . 3
|
| 10 | breq2 4086 |
. . . 4
| |
| 11 | breq1 4085 |
. . . 4
| |
| 12 | 10, 11 | orbi12d 798 |
. . 3
|
| 13 | 9, 12 | imbi12d 234 |
. 2
|
| 14 | oveq2 6008 |
. . . 4
| |
| 15 | oveq2 6008 |
. . . 4
| |
| 16 | 14, 15 | breq12d 4095 |
. . 3
|
| 17 | 16 | imbi1d 231 |
. 2
|
| 18 | mulextsr1lem 7963 |
. . 3
| |
| 19 | mulsrpr 7929 |
. . . . . 6
| |
| 20 | 19 | 3adant2 1040 |
. . . . 5
|
| 21 | mulsrpr 7929 |
. . . . . 6
| |
| 22 | 21 | 3adant1 1039 |
. . . . 5
|
| 23 | 20, 22 | breq12d 4095 |
. . . 4
|
| 24 | simp1l 1045 |
. . . . . . 7
| |
| 25 | simp3l 1049 |
. . . . . . 7
| |
| 26 | mulclpr 7755 |
. . . . . . 7
| |
| 27 | 24, 25, 26 | syl2anc 411 |
. . . . . 6
|
| 28 | simp1r 1046 |
. . . . . . 7
| |
| 29 | simp3r 1050 |
. . . . . . 7
| |
| 30 | mulclpr 7755 |
. . . . . . 7
| |
| 31 | 28, 29, 30 | syl2anc 411 |
. . . . . 6
|
| 32 | addclpr 7720 |
. . . . . 6
| |
| 33 | 27, 31, 32 | syl2anc 411 |
. . . . 5
|
| 34 | mulclpr 7755 |
. . . . . . 7
| |
| 35 | 24, 29, 34 | syl2anc 411 |
. . . . . 6
|
| 36 | mulclpr 7755 |
. . . . . . 7
| |
| 37 | 28, 25, 36 | syl2anc 411 |
. . . . . 6
|
| 38 | addclpr 7720 |
. . . . . 6
| |
| 39 | 35, 37, 38 | syl2anc 411 |
. . . . 5
|
| 40 | simp2l 1047 |
. . . . . . 7
| |
| 41 | mulclpr 7755 |
. . . . . . 7
| |
| 42 | 40, 25, 41 | syl2anc 411 |
. . . . . 6
|
| 43 | simp2r 1048 |
. . . . . . 7
| |
| 44 | mulclpr 7755 |
. . . . . . 7
| |
| 45 | 43, 29, 44 | syl2anc 411 |
. . . . . 6
|
| 46 | addclpr 7720 |
. . . . . 6
| |
| 47 | 42, 45, 46 | syl2anc 411 |
. . . . 5
|
| 48 | mulclpr 7755 |
. . . . . . 7
| |
| 49 | 40, 29, 48 | syl2anc 411 |
. . . . . 6
|
| 50 | mulclpr 7755 |
. . . . . . 7
| |
| 51 | 43, 25, 50 | syl2anc 411 |
. . . . . 6
|
| 52 | addclpr 7720 |
. . . . . 6
| |
| 53 | 49, 51, 52 | syl2anc 411 |
. . . . 5
|
| 54 | ltsrprg 7930 |
. . . . 5
| |
| 55 | 33, 39, 47, 53, 54 | syl22anc 1272 |
. . . 4
|
| 56 | 23, 55 | bitrd 188 |
. . 3
|
| 57 | ltsrprg 7930 |
. . . . 5
| |
| 58 | 57 | 3adant3 1041 |
. . . 4
|
| 59 | ltsrprg 7930 |
. . . . . 6
| |
| 60 | 59 | ancoms 268 |
. . . . 5
|
| 61 | 60 | 3adant3 1041 |
. . . 4
|
| 62 | 58, 61 | orbi12d 798 |
. . 3
|
| 63 | 18, 56, 62 | 3imtr4d 203 |
. 2
|
| 64 | 1, 7, 13, 17, 63 | 3ecoptocl 6769 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4379 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-1o 6560 df-2o 6561 df-oadd 6564 df-omul 6565 df-er 6678 df-ec 6680 df-qs 6684 df-ni 7487 df-pli 7488 df-mi 7489 df-lti 7490 df-plpq 7527 df-mpq 7528 df-enq 7530 df-nqqs 7531 df-plqqs 7532 df-mqqs 7533 df-1nqqs 7534 df-rq 7535 df-ltnqqs 7536 df-enq0 7607 df-nq0 7608 df-0nq0 7609 df-plq0 7610 df-mq0 7611 df-inp 7649 df-i1p 7650 df-iplp 7651 df-imp 7652 df-iltp 7653 df-enr 7909 df-nr 7910 df-mr 7912 df-ltr 7913 |
| This theorem is referenced by: axpre-mulext 8071 |
| Copyright terms: Public domain | W3C validator |