ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulextsr1 Unicode version

Theorem mulextsr1 7722
Description: Strong extensionality of multiplication of signed reals. (Contributed by Jim Kingdon, 18-Feb-2020.)
Assertion
Ref Expression
mulextsr1  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  (
( A  .R  C
)  <R  ( B  .R  C )  ->  ( A  <R  B  \/  B  <R  A ) ) )

Proof of Theorem mulextsr1
Dummy variables  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7668 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 oveq1 5849 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  .R 
[ <. u ,  v
>. ]  ~R  )  =  ( A  .R  [ <. u ,  v >. ]  ~R  ) )
32breq1d 3992 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  .R 
[ <. u ,  v
>. ]  ~R  )  <R 
( [ <. z ,  w >. ]  ~R  .R  [
<. u ,  v >. ]  ~R  )  <->  ( A  .R  [ <. u ,  v
>. ]  ~R  )  <R 
( [ <. z ,  w >. ]  ~R  .R  [
<. u ,  v >. ]  ~R  ) ) )
4 breq1 3985 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  A  <R  [
<. z ,  w >. ]  ~R  ) )
5 breq2 3986 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. z ,  w >. ]  ~R  <R  [
<. x ,  y >. ]  ~R  <->  [ <. z ,  w >. ]  ~R  <R  A ) )
64, 5orbi12d 783 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) 
<->  ( A  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A ) ) )
73, 6imbi12d 233 . 2  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( ( [
<. x ,  y >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R 
[ <. u ,  v
>. ]  ~R  )  -> 
( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) )  <->  ( ( A  .R  [ <. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R 
[ <. u ,  v
>. ]  ~R  )  -> 
( A  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A ) ) ) )
8 oveq1 5849 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( [ <. z ,  w >. ]  ~R  .R  [
<. u ,  v >. ]  ~R  )  =  ( B  .R  [ <. u ,  v >. ]  ~R  ) )
98breq2d 3994 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( A  .R  [
<. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <->  ( A  .R  [ <. u ,  v
>. ]  ~R  )  <R 
( B  .R  [ <. u ,  v >. ]  ~R  ) ) )
10 breq2 3986 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( A  <R  [ <. z ,  w >. ]  ~R  <->  A 
<R  B ) )
11 breq1 3985 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( [ <. z ,  w >. ]  ~R  <R  A  <-> 
B  <R  A ) )
1210, 11orbi12d 783 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( A  <R  [
<. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A )  <->  ( A  <R  B  \/  B  <R  A ) ) )
139, 12imbi12d 233 . 2  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( ( A  .R  [ <. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R 
[ <. u ,  v
>. ]  ~R  )  -> 
( A  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A ) )  <->  ( ( A  .R  [ <. u ,  v >. ]  ~R  )  <R  ( B  .R  [
<. u ,  v >. ]  ~R  )  ->  ( A  <R  B  \/  B  <R  A ) ) ) )
14 oveq2 5850 . . . 4  |-  ( [
<. u ,  v >. ]  ~R  =  C  -> 
( A  .R  [ <. u ,  v >. ]  ~R  )  =  ( A  .R  C ) )
15 oveq2 5850 . . . 4  |-  ( [
<. u ,  v >. ]  ~R  =  C  -> 
( B  .R  [ <. u ,  v >. ]  ~R  )  =  ( B  .R  C ) )
1614, 15breq12d 3995 . . 3  |-  ( [
<. u ,  v >. ]  ~R  =  C  -> 
( ( A  .R  [
<. u ,  v >. ]  ~R  )  <R  ( B  .R  [ <. u ,  v >. ]  ~R  ) 
<->  ( A  .R  C
)  <R  ( B  .R  C ) ) )
1716imbi1d 230 . 2  |-  ( [
<. u ,  v >. ]  ~R  =  C  -> 
( ( ( A  .R  [ <. u ,  v >. ]  ~R  )  <R  ( B  .R  [
<. u ,  v >. ]  ~R  )  ->  ( A  <R  B  \/  B  <R  A ) )  <->  ( ( A  .R  C )  <R 
( B  .R  C
)  ->  ( A  <R  B  \/  B  <R  A ) ) ) )
18 mulextsr1lem 7721 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( (
( ( x  .P.  u )  +P.  (
y  .P.  v )
)  +P.  ( (
z  .P.  v )  +P.  ( w  .P.  u
) ) )  <P 
( ( ( x  .P.  v )  +P.  ( y  .P.  u
) )  +P.  (
( z  .P.  u
)  +P.  ( w  .P.  v ) ) )  ->  ( ( x  +P.  w )  <P 
( y  +P.  z
)  \/  ( z  +P.  y )  <P 
( w  +P.  x
) ) ) )
19 mulsrpr 7687 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  =  [ <. (
( x  .P.  u
)  +P.  ( y  .P.  v ) ) ,  ( ( x  .P.  v )  +P.  (
y  .P.  u )
) >. ]  ~R  )
20193adant2 1006 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  =  [ <. (
( x  .P.  u
)  +P.  ( y  .P.  v ) ) ,  ( ( x  .P.  v )  +P.  (
y  .P.  u )
) >. ]  ~R  )
21 mulsrpr 7687 . . . . . 6  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  =  [ <. (
( z  .P.  u
)  +P.  ( w  .P.  v ) ) ,  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) >. ]  ~R  )
22213adant1 1005 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  =  [ <. (
( z  .P.  u
)  +P.  ( w  .P.  v ) ) ,  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) >. ]  ~R  )
2320, 22breq12d 3995 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <->  [ <. (
( x  .P.  u
)  +P.  ( y  .P.  v ) ) ,  ( ( x  .P.  v )  +P.  (
y  .P.  u )
) >. ]  ~R  <R  [
<. ( ( z  .P.  u )  +P.  (
w  .P.  v )
) ,  ( ( z  .P.  v )  +P.  ( w  .P.  u ) ) >. ]  ~R  ) )
24 simp1l 1011 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  x  e.  P. )
25 simp3l 1015 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  u  e.  P. )
26 mulclpr 7513 . . . . . . 7  |-  ( ( x  e.  P.  /\  u  e.  P. )  ->  ( x  .P.  u
)  e.  P. )
2724, 25, 26syl2anc 409 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( x  .P.  u )  e.  P. )
28 simp1r 1012 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  y  e.  P. )
29 simp3r 1016 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  v  e.  P. )
30 mulclpr 7513 . . . . . . 7  |-  ( ( y  e.  P.  /\  v  e.  P. )  ->  ( y  .P.  v
)  e.  P. )
3128, 29, 30syl2anc 409 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( y  .P.  v )  e.  P. )
32 addclpr 7478 . . . . . 6  |-  ( ( ( x  .P.  u
)  e.  P.  /\  ( y  .P.  v
)  e.  P. )  ->  ( ( x  .P.  u )  +P.  (
y  .P.  v )
)  e.  P. )
3327, 31, 32syl2anc 409 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( (
x  .P.  u )  +P.  ( y  .P.  v
) )  e.  P. )
34 mulclpr 7513 . . . . . . 7  |-  ( ( x  e.  P.  /\  v  e.  P. )  ->  ( x  .P.  v
)  e.  P. )
3524, 29, 34syl2anc 409 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( x  .P.  v )  e.  P. )
36 mulclpr 7513 . . . . . . 7  |-  ( ( y  e.  P.  /\  u  e.  P. )  ->  ( y  .P.  u
)  e.  P. )
3728, 25, 36syl2anc 409 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( y  .P.  u )  e.  P. )
38 addclpr 7478 . . . . . 6  |-  ( ( ( x  .P.  v
)  e.  P.  /\  ( y  .P.  u
)  e.  P. )  ->  ( ( x  .P.  v )  +P.  (
y  .P.  u )
)  e.  P. )
3935, 37, 38syl2anc 409 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( (
x  .P.  v )  +P.  ( y  .P.  u
) )  e.  P. )
40 simp2l 1013 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  z  e.  P. )
41 mulclpr 7513 . . . . . . 7  |-  ( ( z  e.  P.  /\  u  e.  P. )  ->  ( z  .P.  u
)  e.  P. )
4240, 25, 41syl2anc 409 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( z  .P.  u )  e.  P. )
43 simp2r 1014 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  w  e.  P. )
44 mulclpr 7513 . . . . . . 7  |-  ( ( w  e.  P.  /\  v  e.  P. )  ->  ( w  .P.  v
)  e.  P. )
4543, 29, 44syl2anc 409 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( w  .P.  v )  e.  P. )
46 addclpr 7478 . . . . . 6  |-  ( ( ( z  .P.  u
)  e.  P.  /\  ( w  .P.  v )  e.  P. )  -> 
( ( z  .P.  u )  +P.  (
w  .P.  v )
)  e.  P. )
4742, 45, 46syl2anc 409 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( (
z  .P.  u )  +P.  ( w  .P.  v
) )  e.  P. )
48 mulclpr 7513 . . . . . . 7  |-  ( ( z  e.  P.  /\  v  e.  P. )  ->  ( z  .P.  v
)  e.  P. )
4940, 29, 48syl2anc 409 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( z  .P.  v )  e.  P. )
50 mulclpr 7513 . . . . . . 7  |-  ( ( w  e.  P.  /\  u  e.  P. )  ->  ( w  .P.  u
)  e.  P. )
5143, 25, 50syl2anc 409 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( w  .P.  u )  e.  P. )
52 addclpr 7478 . . . . . 6  |-  ( ( ( z  .P.  v
)  e.  P.  /\  ( w  .P.  u )  e.  P. )  -> 
( ( z  .P.  v )  +P.  (
w  .P.  u )
)  e.  P. )
5349, 51, 52syl2anc 409 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( (
z  .P.  v )  +P.  ( w  .P.  u
) )  e.  P. )
54 ltsrprg 7688 . . . . 5  |-  ( ( ( ( ( x  .P.  u )  +P.  ( y  .P.  v
) )  e.  P.  /\  ( ( x  .P.  v )  +P.  (
y  .P.  u )
)  e.  P. )  /\  ( ( ( z  .P.  u )  +P.  ( w  .P.  v
) )  e.  P.  /\  ( ( z  .P.  v )  +P.  (
w  .P.  u )
)  e.  P. )
)  ->  ( [ <. ( ( x  .P.  u )  +P.  (
y  .P.  v )
) ,  ( ( x  .P.  v )  +P.  ( y  .P.  u ) ) >. ]  ~R  <R  [ <. (
( z  .P.  u
)  +P.  ( w  .P.  v ) ) ,  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) >. ]  ~R  <->  ( (
( x  .P.  u
)  +P.  ( y  .P.  v ) )  +P.  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) )  <P  (
( ( x  .P.  v )  +P.  (
y  .P.  u )
)  +P.  ( (
z  .P.  u )  +P.  ( w  .P.  v
) ) ) ) )
5533, 39, 47, 53, 54syl22anc 1229 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. ( ( x  .P.  u )  +P.  (
y  .P.  v )
) ,  ( ( x  .P.  v )  +P.  ( y  .P.  u ) ) >. ]  ~R  <R  [ <. (
( z  .P.  u
)  +P.  ( w  .P.  v ) ) ,  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) >. ]  ~R  <->  ( (
( x  .P.  u
)  +P.  ( y  .P.  v ) )  +P.  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) )  <P  (
( ( x  .P.  v )  +P.  (
y  .P.  u )
)  +P.  ( (
z  .P.  u )  +P.  ( w  .P.  v
) ) ) ) )
5623, 55bitrd 187 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <->  ( (
( x  .P.  u
)  +P.  ( y  .P.  v ) )  +P.  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) )  <P  (
( ( x  .P.  v )  +P.  (
y  .P.  u )
)  +P.  ( (
z  .P.  u )  +P.  ( w  .P.  v
) ) ) ) )
57 ltsrprg 7688 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  w )  <P  (
y  +P.  z )
) )
58573adant3 1007 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  w )  <P  (
y  +P.  z )
) )
59 ltsrprg 7688 . . . . . 6  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  <->  ( z  +P.  y ) 
<P  ( w  +P.  x
) ) )
6059ancoms 266 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  <->  ( z  +P.  y ) 
<P  ( w  +P.  x
) ) )
61603adant3 1007 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  <->  ( z  +P.  y ) 
<P  ( w  +P.  x
) ) )
6258, 61orbi12d 783 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) 
<->  ( ( x  +P.  w )  <P  (
y  +P.  z )  \/  ( z  +P.  y
)  <P  ( w  +P.  x ) ) ) )
6318, 56, 623imtr4d 202 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  ->  ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) ) )
641, 7, 13, 17, 633ecoptocl 6590 1  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  (
( A  .R  C
)  <R  ( B  .R  C )  ->  ( A  <R  B  \/  B  <R  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 968    = wceq 1343    e. wcel 2136   <.cop 3579   class class class wbr 3982  (class class class)co 5842   [cec 6499   P.cnp 7232    +P. cpp 7234    .P. cmp 7235    <P cltp 7236    ~R cer 7237   R.cnr 7238    .R cmr 7243    <R cltr 7244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-i1p 7408  df-iplp 7409  df-imp 7410  df-iltp 7411  df-enr 7667  df-nr 7668  df-mr 7670  df-ltr 7671
This theorem is referenced by:  axpre-mulext  7829
  Copyright terms: Public domain W3C validator