| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulextsr1 | Unicode version | ||
| Description: Strong extensionality of multiplication of signed reals. (Contributed by Jim Kingdon, 18-Feb-2020.) |
| Ref | Expression |
|---|---|
| mulextsr1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 7860 |
. 2
| |
| 2 | oveq1 5964 |
. . . 4
| |
| 3 | 2 | breq1d 4061 |
. . 3
|
| 4 | breq1 4054 |
. . . 4
| |
| 5 | breq2 4055 |
. . . 4
| |
| 6 | 4, 5 | orbi12d 795 |
. . 3
|
| 7 | 3, 6 | imbi12d 234 |
. 2
|
| 8 | oveq1 5964 |
. . . 4
| |
| 9 | 8 | breq2d 4063 |
. . 3
|
| 10 | breq2 4055 |
. . . 4
| |
| 11 | breq1 4054 |
. . . 4
| |
| 12 | 10, 11 | orbi12d 795 |
. . 3
|
| 13 | 9, 12 | imbi12d 234 |
. 2
|
| 14 | oveq2 5965 |
. . . 4
| |
| 15 | oveq2 5965 |
. . . 4
| |
| 16 | 14, 15 | breq12d 4064 |
. . 3
|
| 17 | 16 | imbi1d 231 |
. 2
|
| 18 | mulextsr1lem 7913 |
. . 3
| |
| 19 | mulsrpr 7879 |
. . . . . 6
| |
| 20 | 19 | 3adant2 1019 |
. . . . 5
|
| 21 | mulsrpr 7879 |
. . . . . 6
| |
| 22 | 21 | 3adant1 1018 |
. . . . 5
|
| 23 | 20, 22 | breq12d 4064 |
. . . 4
|
| 24 | simp1l 1024 |
. . . . . . 7
| |
| 25 | simp3l 1028 |
. . . . . . 7
| |
| 26 | mulclpr 7705 |
. . . . . . 7
| |
| 27 | 24, 25, 26 | syl2anc 411 |
. . . . . 6
|
| 28 | simp1r 1025 |
. . . . . . 7
| |
| 29 | simp3r 1029 |
. . . . . . 7
| |
| 30 | mulclpr 7705 |
. . . . . . 7
| |
| 31 | 28, 29, 30 | syl2anc 411 |
. . . . . 6
|
| 32 | addclpr 7670 |
. . . . . 6
| |
| 33 | 27, 31, 32 | syl2anc 411 |
. . . . 5
|
| 34 | mulclpr 7705 |
. . . . . . 7
| |
| 35 | 24, 29, 34 | syl2anc 411 |
. . . . . 6
|
| 36 | mulclpr 7705 |
. . . . . . 7
| |
| 37 | 28, 25, 36 | syl2anc 411 |
. . . . . 6
|
| 38 | addclpr 7670 |
. . . . . 6
| |
| 39 | 35, 37, 38 | syl2anc 411 |
. . . . 5
|
| 40 | simp2l 1026 |
. . . . . . 7
| |
| 41 | mulclpr 7705 |
. . . . . . 7
| |
| 42 | 40, 25, 41 | syl2anc 411 |
. . . . . 6
|
| 43 | simp2r 1027 |
. . . . . . 7
| |
| 44 | mulclpr 7705 |
. . . . . . 7
| |
| 45 | 43, 29, 44 | syl2anc 411 |
. . . . . 6
|
| 46 | addclpr 7670 |
. . . . . 6
| |
| 47 | 42, 45, 46 | syl2anc 411 |
. . . . 5
|
| 48 | mulclpr 7705 |
. . . . . . 7
| |
| 49 | 40, 29, 48 | syl2anc 411 |
. . . . . 6
|
| 50 | mulclpr 7705 |
. . . . . . 7
| |
| 51 | 43, 25, 50 | syl2anc 411 |
. . . . . 6
|
| 52 | addclpr 7670 |
. . . . . 6
| |
| 53 | 49, 51, 52 | syl2anc 411 |
. . . . 5
|
| 54 | ltsrprg 7880 |
. . . . 5
| |
| 55 | 33, 39, 47, 53, 54 | syl22anc 1251 |
. . . 4
|
| 56 | 23, 55 | bitrd 188 |
. . 3
|
| 57 | ltsrprg 7880 |
. . . . 5
| |
| 58 | 57 | 3adant3 1020 |
. . . 4
|
| 59 | ltsrprg 7880 |
. . . . . 6
| |
| 60 | 59 | ancoms 268 |
. . . . 5
|
| 61 | 60 | 3adant3 1020 |
. . . 4
|
| 62 | 58, 61 | orbi12d 795 |
. . 3
|
| 63 | 18, 56, 62 | 3imtr4d 203 |
. 2
|
| 64 | 1, 7, 13, 17, 63 | 3ecoptocl 6724 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-eprel 4344 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-1o 6515 df-2o 6516 df-oadd 6519 df-omul 6520 df-er 6633 df-ec 6635 df-qs 6639 df-ni 7437 df-pli 7438 df-mi 7439 df-lti 7440 df-plpq 7477 df-mpq 7478 df-enq 7480 df-nqqs 7481 df-plqqs 7482 df-mqqs 7483 df-1nqqs 7484 df-rq 7485 df-ltnqqs 7486 df-enq0 7557 df-nq0 7558 df-0nq0 7559 df-plq0 7560 df-mq0 7561 df-inp 7599 df-i1p 7600 df-iplp 7601 df-imp 7602 df-iltp 7603 df-enr 7859 df-nr 7860 df-mr 7862 df-ltr 7863 |
| This theorem is referenced by: axpre-mulext 8021 |
| Copyright terms: Public domain | W3C validator |