ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulextsr1 Unicode version

Theorem mulextsr1 7848
Description: Strong extensionality of multiplication of signed reals. (Contributed by Jim Kingdon, 18-Feb-2020.)
Assertion
Ref Expression
mulextsr1  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  (
( A  .R  C
)  <R  ( B  .R  C )  ->  ( A  <R  B  \/  B  <R  A ) ) )

Proof of Theorem mulextsr1
Dummy variables  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7794 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 oveq1 5929 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  .R 
[ <. u ,  v
>. ]  ~R  )  =  ( A  .R  [ <. u ,  v >. ]  ~R  ) )
32breq1d 4043 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  .R 
[ <. u ,  v
>. ]  ~R  )  <R 
( [ <. z ,  w >. ]  ~R  .R  [
<. u ,  v >. ]  ~R  )  <->  ( A  .R  [ <. u ,  v
>. ]  ~R  )  <R 
( [ <. z ,  w >. ]  ~R  .R  [
<. u ,  v >. ]  ~R  ) ) )
4 breq1 4036 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  A  <R  [
<. z ,  w >. ]  ~R  ) )
5 breq2 4037 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. z ,  w >. ]  ~R  <R  [
<. x ,  y >. ]  ~R  <->  [ <. z ,  w >. ]  ~R  <R  A ) )
64, 5orbi12d 794 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) 
<->  ( A  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A ) ) )
73, 6imbi12d 234 . 2  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( ( [
<. x ,  y >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R 
[ <. u ,  v
>. ]  ~R  )  -> 
( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) )  <->  ( ( A  .R  [ <. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R 
[ <. u ,  v
>. ]  ~R  )  -> 
( A  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A ) ) ) )
8 oveq1 5929 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( [ <. z ,  w >. ]  ~R  .R  [
<. u ,  v >. ]  ~R  )  =  ( B  .R  [ <. u ,  v >. ]  ~R  ) )
98breq2d 4045 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( A  .R  [
<. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <->  ( A  .R  [ <. u ,  v
>. ]  ~R  )  <R 
( B  .R  [ <. u ,  v >. ]  ~R  ) ) )
10 breq2 4037 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( A  <R  [ <. z ,  w >. ]  ~R  <->  A 
<R  B ) )
11 breq1 4036 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( [ <. z ,  w >. ]  ~R  <R  A  <-> 
B  <R  A ) )
1210, 11orbi12d 794 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( A  <R  [
<. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A )  <->  ( A  <R  B  \/  B  <R  A ) ) )
139, 12imbi12d 234 . 2  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( ( A  .R  [ <. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R 
[ <. u ,  v
>. ]  ~R  )  -> 
( A  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A ) )  <->  ( ( A  .R  [ <. u ,  v >. ]  ~R  )  <R  ( B  .R  [
<. u ,  v >. ]  ~R  )  ->  ( A  <R  B  \/  B  <R  A ) ) ) )
14 oveq2 5930 . . . 4  |-  ( [
<. u ,  v >. ]  ~R  =  C  -> 
( A  .R  [ <. u ,  v >. ]  ~R  )  =  ( A  .R  C ) )
15 oveq2 5930 . . . 4  |-  ( [
<. u ,  v >. ]  ~R  =  C  -> 
( B  .R  [ <. u ,  v >. ]  ~R  )  =  ( B  .R  C ) )
1614, 15breq12d 4046 . . 3  |-  ( [
<. u ,  v >. ]  ~R  =  C  -> 
( ( A  .R  [
<. u ,  v >. ]  ~R  )  <R  ( B  .R  [ <. u ,  v >. ]  ~R  ) 
<->  ( A  .R  C
)  <R  ( B  .R  C ) ) )
1716imbi1d 231 . 2  |-  ( [
<. u ,  v >. ]  ~R  =  C  -> 
( ( ( A  .R  [ <. u ,  v >. ]  ~R  )  <R  ( B  .R  [
<. u ,  v >. ]  ~R  )  ->  ( A  <R  B  \/  B  <R  A ) )  <->  ( ( A  .R  C )  <R 
( B  .R  C
)  ->  ( A  <R  B  \/  B  <R  A ) ) ) )
18 mulextsr1lem 7847 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( (
( ( x  .P.  u )  +P.  (
y  .P.  v )
)  +P.  ( (
z  .P.  v )  +P.  ( w  .P.  u
) ) )  <P 
( ( ( x  .P.  v )  +P.  ( y  .P.  u
) )  +P.  (
( z  .P.  u
)  +P.  ( w  .P.  v ) ) )  ->  ( ( x  +P.  w )  <P 
( y  +P.  z
)  \/  ( z  +P.  y )  <P 
( w  +P.  x
) ) ) )
19 mulsrpr 7813 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  =  [ <. (
( x  .P.  u
)  +P.  ( y  .P.  v ) ) ,  ( ( x  .P.  v )  +P.  (
y  .P.  u )
) >. ]  ~R  )
20193adant2 1018 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  =  [ <. (
( x  .P.  u
)  +P.  ( y  .P.  v ) ) ,  ( ( x  .P.  v )  +P.  (
y  .P.  u )
) >. ]  ~R  )
21 mulsrpr 7813 . . . . . 6  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  =  [ <. (
( z  .P.  u
)  +P.  ( w  .P.  v ) ) ,  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) >. ]  ~R  )
22213adant1 1017 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  =  [ <. (
( z  .P.  u
)  +P.  ( w  .P.  v ) ) ,  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) >. ]  ~R  )
2320, 22breq12d 4046 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <->  [ <. (
( x  .P.  u
)  +P.  ( y  .P.  v ) ) ,  ( ( x  .P.  v )  +P.  (
y  .P.  u )
) >. ]  ~R  <R  [
<. ( ( z  .P.  u )  +P.  (
w  .P.  v )
) ,  ( ( z  .P.  v )  +P.  ( w  .P.  u ) ) >. ]  ~R  ) )
24 simp1l 1023 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  x  e.  P. )
25 simp3l 1027 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  u  e.  P. )
26 mulclpr 7639 . . . . . . 7  |-  ( ( x  e.  P.  /\  u  e.  P. )  ->  ( x  .P.  u
)  e.  P. )
2724, 25, 26syl2anc 411 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( x  .P.  u )  e.  P. )
28 simp1r 1024 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  y  e.  P. )
29 simp3r 1028 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  v  e.  P. )
30 mulclpr 7639 . . . . . . 7  |-  ( ( y  e.  P.  /\  v  e.  P. )  ->  ( y  .P.  v
)  e.  P. )
3128, 29, 30syl2anc 411 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( y  .P.  v )  e.  P. )
32 addclpr 7604 . . . . . 6  |-  ( ( ( x  .P.  u
)  e.  P.  /\  ( y  .P.  v
)  e.  P. )  ->  ( ( x  .P.  u )  +P.  (
y  .P.  v )
)  e.  P. )
3327, 31, 32syl2anc 411 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( (
x  .P.  u )  +P.  ( y  .P.  v
) )  e.  P. )
34 mulclpr 7639 . . . . . . 7  |-  ( ( x  e.  P.  /\  v  e.  P. )  ->  ( x  .P.  v
)  e.  P. )
3524, 29, 34syl2anc 411 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( x  .P.  v )  e.  P. )
36 mulclpr 7639 . . . . . . 7  |-  ( ( y  e.  P.  /\  u  e.  P. )  ->  ( y  .P.  u
)  e.  P. )
3728, 25, 36syl2anc 411 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( y  .P.  u )  e.  P. )
38 addclpr 7604 . . . . . 6  |-  ( ( ( x  .P.  v
)  e.  P.  /\  ( y  .P.  u
)  e.  P. )  ->  ( ( x  .P.  v )  +P.  (
y  .P.  u )
)  e.  P. )
3935, 37, 38syl2anc 411 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( (
x  .P.  v )  +P.  ( y  .P.  u
) )  e.  P. )
40 simp2l 1025 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  z  e.  P. )
41 mulclpr 7639 . . . . . . 7  |-  ( ( z  e.  P.  /\  u  e.  P. )  ->  ( z  .P.  u
)  e.  P. )
4240, 25, 41syl2anc 411 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( z  .P.  u )  e.  P. )
43 simp2r 1026 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  w  e.  P. )
44 mulclpr 7639 . . . . . . 7  |-  ( ( w  e.  P.  /\  v  e.  P. )  ->  ( w  .P.  v
)  e.  P. )
4543, 29, 44syl2anc 411 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( w  .P.  v )  e.  P. )
46 addclpr 7604 . . . . . 6  |-  ( ( ( z  .P.  u
)  e.  P.  /\  ( w  .P.  v )  e.  P. )  -> 
( ( z  .P.  u )  +P.  (
w  .P.  v )
)  e.  P. )
4742, 45, 46syl2anc 411 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( (
z  .P.  u )  +P.  ( w  .P.  v
) )  e.  P. )
48 mulclpr 7639 . . . . . . 7  |-  ( ( z  e.  P.  /\  v  e.  P. )  ->  ( z  .P.  v
)  e.  P. )
4940, 29, 48syl2anc 411 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( z  .P.  v )  e.  P. )
50 mulclpr 7639 . . . . . . 7  |-  ( ( w  e.  P.  /\  u  e.  P. )  ->  ( w  .P.  u
)  e.  P. )
5143, 25, 50syl2anc 411 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( w  .P.  u )  e.  P. )
52 addclpr 7604 . . . . . 6  |-  ( ( ( z  .P.  v
)  e.  P.  /\  ( w  .P.  u )  e.  P. )  -> 
( ( z  .P.  v )  +P.  (
w  .P.  u )
)  e.  P. )
5349, 51, 52syl2anc 411 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( (
z  .P.  v )  +P.  ( w  .P.  u
) )  e.  P. )
54 ltsrprg 7814 . . . . 5  |-  ( ( ( ( ( x  .P.  u )  +P.  ( y  .P.  v
) )  e.  P.  /\  ( ( x  .P.  v )  +P.  (
y  .P.  u )
)  e.  P. )  /\  ( ( ( z  .P.  u )  +P.  ( w  .P.  v
) )  e.  P.  /\  ( ( z  .P.  v )  +P.  (
w  .P.  u )
)  e.  P. )
)  ->  ( [ <. ( ( x  .P.  u )  +P.  (
y  .P.  v )
) ,  ( ( x  .P.  v )  +P.  ( y  .P.  u ) ) >. ]  ~R  <R  [ <. (
( z  .P.  u
)  +P.  ( w  .P.  v ) ) ,  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) >. ]  ~R  <->  ( (
( x  .P.  u
)  +P.  ( y  .P.  v ) )  +P.  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) )  <P  (
( ( x  .P.  v )  +P.  (
y  .P.  u )
)  +P.  ( (
z  .P.  u )  +P.  ( w  .P.  v
) ) ) ) )
5533, 39, 47, 53, 54syl22anc 1250 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. ( ( x  .P.  u )  +P.  (
y  .P.  v )
) ,  ( ( x  .P.  v )  +P.  ( y  .P.  u ) ) >. ]  ~R  <R  [ <. (
( z  .P.  u
)  +P.  ( w  .P.  v ) ) ,  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) >. ]  ~R  <->  ( (
( x  .P.  u
)  +P.  ( y  .P.  v ) )  +P.  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) )  <P  (
( ( x  .P.  v )  +P.  (
y  .P.  u )
)  +P.  ( (
z  .P.  u )  +P.  ( w  .P.  v
) ) ) ) )
5623, 55bitrd 188 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <->  ( (
( x  .P.  u
)  +P.  ( y  .P.  v ) )  +P.  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) )  <P  (
( ( x  .P.  v )  +P.  (
y  .P.  u )
)  +P.  ( (
z  .P.  u )  +P.  ( w  .P.  v
) ) ) ) )
57 ltsrprg 7814 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  w )  <P  (
y  +P.  z )
) )
58573adant3 1019 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  w )  <P  (
y  +P.  z )
) )
59 ltsrprg 7814 . . . . . 6  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  <->  ( z  +P.  y ) 
<P  ( w  +P.  x
) ) )
6059ancoms 268 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  <->  ( z  +P.  y ) 
<P  ( w  +P.  x
) ) )
61603adant3 1019 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  <->  ( z  +P.  y ) 
<P  ( w  +P.  x
) ) )
6258, 61orbi12d 794 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) 
<->  ( ( x  +P.  w )  <P  (
y  +P.  z )  \/  ( z  +P.  y
)  <P  ( w  +P.  x ) ) ) )
6318, 56, 623imtr4d 203 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  ->  ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) ) )
641, 7, 13, 17, 633ecoptocl 6683 1  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  (
( A  .R  C
)  <R  ( B  .R  C )  ->  ( A  <R  B  \/  B  <R  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   <.cop 3625   class class class wbr 4033  (class class class)co 5922   [cec 6590   P.cnp 7358    +P. cpp 7360    .P. cmp 7361    <P cltp 7362    ~R cer 7363   R.cnr 7364    .R cmr 7369    <R cltr 7370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-enq0 7491  df-nq0 7492  df-0nq0 7493  df-plq0 7494  df-mq0 7495  df-inp 7533  df-i1p 7534  df-iplp 7535  df-imp 7536  df-iltp 7537  df-enr 7793  df-nr 7794  df-mr 7796  df-ltr 7797
This theorem is referenced by:  axpre-mulext  7955
  Copyright terms: Public domain W3C validator