ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulextsr1 Unicode version

Theorem mulextsr1 7841
Description: Strong extensionality of multiplication of signed reals. (Contributed by Jim Kingdon, 18-Feb-2020.)
Assertion
Ref Expression
mulextsr1  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  (
( A  .R  C
)  <R  ( B  .R  C )  ->  ( A  <R  B  \/  B  <R  A ) ) )

Proof of Theorem mulextsr1
Dummy variables  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7787 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 oveq1 5925 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  .R 
[ <. u ,  v
>. ]  ~R  )  =  ( A  .R  [ <. u ,  v >. ]  ~R  ) )
32breq1d 4039 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  .R 
[ <. u ,  v
>. ]  ~R  )  <R 
( [ <. z ,  w >. ]  ~R  .R  [
<. u ,  v >. ]  ~R  )  <->  ( A  .R  [ <. u ,  v
>. ]  ~R  )  <R 
( [ <. z ,  w >. ]  ~R  .R  [
<. u ,  v >. ]  ~R  ) ) )
4 breq1 4032 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  A  <R  [
<. z ,  w >. ]  ~R  ) )
5 breq2 4033 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. z ,  w >. ]  ~R  <R  [
<. x ,  y >. ]  ~R  <->  [ <. z ,  w >. ]  ~R  <R  A ) )
64, 5orbi12d 794 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) 
<->  ( A  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A ) ) )
73, 6imbi12d 234 . 2  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( ( [
<. x ,  y >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R 
[ <. u ,  v
>. ]  ~R  )  -> 
( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) )  <->  ( ( A  .R  [ <. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R 
[ <. u ,  v
>. ]  ~R  )  -> 
( A  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A ) ) ) )
8 oveq1 5925 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( [ <. z ,  w >. ]  ~R  .R  [
<. u ,  v >. ]  ~R  )  =  ( B  .R  [ <. u ,  v >. ]  ~R  ) )
98breq2d 4041 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( A  .R  [
<. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <->  ( A  .R  [ <. u ,  v
>. ]  ~R  )  <R 
( B  .R  [ <. u ,  v >. ]  ~R  ) ) )
10 breq2 4033 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( A  <R  [ <. z ,  w >. ]  ~R  <->  A 
<R  B ) )
11 breq1 4032 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( [ <. z ,  w >. ]  ~R  <R  A  <-> 
B  <R  A ) )
1210, 11orbi12d 794 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( A  <R  [
<. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A )  <->  ( A  <R  B  \/  B  <R  A ) ) )
139, 12imbi12d 234 . 2  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( ( A  .R  [ <. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R 
[ <. u ,  v
>. ]  ~R  )  -> 
( A  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  A ) )  <->  ( ( A  .R  [ <. u ,  v >. ]  ~R  )  <R  ( B  .R  [
<. u ,  v >. ]  ~R  )  ->  ( A  <R  B  \/  B  <R  A ) ) ) )
14 oveq2 5926 . . . 4  |-  ( [
<. u ,  v >. ]  ~R  =  C  -> 
( A  .R  [ <. u ,  v >. ]  ~R  )  =  ( A  .R  C ) )
15 oveq2 5926 . . . 4  |-  ( [
<. u ,  v >. ]  ~R  =  C  -> 
( B  .R  [ <. u ,  v >. ]  ~R  )  =  ( B  .R  C ) )
1614, 15breq12d 4042 . . 3  |-  ( [
<. u ,  v >. ]  ~R  =  C  -> 
( ( A  .R  [
<. u ,  v >. ]  ~R  )  <R  ( B  .R  [ <. u ,  v >. ]  ~R  ) 
<->  ( A  .R  C
)  <R  ( B  .R  C ) ) )
1716imbi1d 231 . 2  |-  ( [
<. u ,  v >. ]  ~R  =  C  -> 
( ( ( A  .R  [ <. u ,  v >. ]  ~R  )  <R  ( B  .R  [
<. u ,  v >. ]  ~R  )  ->  ( A  <R  B  \/  B  <R  A ) )  <->  ( ( A  .R  C )  <R 
( B  .R  C
)  ->  ( A  <R  B  \/  B  <R  A ) ) ) )
18 mulextsr1lem 7840 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( (
( ( x  .P.  u )  +P.  (
y  .P.  v )
)  +P.  ( (
z  .P.  v )  +P.  ( w  .P.  u
) ) )  <P 
( ( ( x  .P.  v )  +P.  ( y  .P.  u
) )  +P.  (
( z  .P.  u
)  +P.  ( w  .P.  v ) ) )  ->  ( ( x  +P.  w )  <P 
( y  +P.  z
)  \/  ( z  +P.  y )  <P 
( w  +P.  x
) ) ) )
19 mulsrpr 7806 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  =  [ <. (
( x  .P.  u
)  +P.  ( y  .P.  v ) ) ,  ( ( x  .P.  v )  +P.  (
y  .P.  u )
) >. ]  ~R  )
20193adant2 1018 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  =  [ <. (
( x  .P.  u
)  +P.  ( y  .P.  v ) ) ,  ( ( x  .P.  v )  +P.  (
y  .P.  u )
) >. ]  ~R  )
21 mulsrpr 7806 . . . . . 6  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  =  [ <. (
( z  .P.  u
)  +P.  ( w  .P.  v ) ) ,  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) >. ]  ~R  )
22213adant1 1017 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  =  [ <. (
( z  .P.  u
)  +P.  ( w  .P.  v ) ) ,  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) >. ]  ~R  )
2320, 22breq12d 4042 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <->  [ <. (
( x  .P.  u
)  +P.  ( y  .P.  v ) ) ,  ( ( x  .P.  v )  +P.  (
y  .P.  u )
) >. ]  ~R  <R  [
<. ( ( z  .P.  u )  +P.  (
w  .P.  v )
) ,  ( ( z  .P.  v )  +P.  ( w  .P.  u ) ) >. ]  ~R  ) )
24 simp1l 1023 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  x  e.  P. )
25 simp3l 1027 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  u  e.  P. )
26 mulclpr 7632 . . . . . . 7  |-  ( ( x  e.  P.  /\  u  e.  P. )  ->  ( x  .P.  u
)  e.  P. )
2724, 25, 26syl2anc 411 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( x  .P.  u )  e.  P. )
28 simp1r 1024 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  y  e.  P. )
29 simp3r 1028 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  v  e.  P. )
30 mulclpr 7632 . . . . . . 7  |-  ( ( y  e.  P.  /\  v  e.  P. )  ->  ( y  .P.  v
)  e.  P. )
3128, 29, 30syl2anc 411 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( y  .P.  v )  e.  P. )
32 addclpr 7597 . . . . . 6  |-  ( ( ( x  .P.  u
)  e.  P.  /\  ( y  .P.  v
)  e.  P. )  ->  ( ( x  .P.  u )  +P.  (
y  .P.  v )
)  e.  P. )
3327, 31, 32syl2anc 411 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( (
x  .P.  u )  +P.  ( y  .P.  v
) )  e.  P. )
34 mulclpr 7632 . . . . . . 7  |-  ( ( x  e.  P.  /\  v  e.  P. )  ->  ( x  .P.  v
)  e.  P. )
3524, 29, 34syl2anc 411 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( x  .P.  v )  e.  P. )
36 mulclpr 7632 . . . . . . 7  |-  ( ( y  e.  P.  /\  u  e.  P. )  ->  ( y  .P.  u
)  e.  P. )
3728, 25, 36syl2anc 411 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( y  .P.  u )  e.  P. )
38 addclpr 7597 . . . . . 6  |-  ( ( ( x  .P.  v
)  e.  P.  /\  ( y  .P.  u
)  e.  P. )  ->  ( ( x  .P.  v )  +P.  (
y  .P.  u )
)  e.  P. )
3935, 37, 38syl2anc 411 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( (
x  .P.  v )  +P.  ( y  .P.  u
) )  e.  P. )
40 simp2l 1025 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  z  e.  P. )
41 mulclpr 7632 . . . . . . 7  |-  ( ( z  e.  P.  /\  u  e.  P. )  ->  ( z  .P.  u
)  e.  P. )
4240, 25, 41syl2anc 411 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( z  .P.  u )  e.  P. )
43 simp2r 1026 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  w  e.  P. )
44 mulclpr 7632 . . . . . . 7  |-  ( ( w  e.  P.  /\  v  e.  P. )  ->  ( w  .P.  v
)  e.  P. )
4543, 29, 44syl2anc 411 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( w  .P.  v )  e.  P. )
46 addclpr 7597 . . . . . 6  |-  ( ( ( z  .P.  u
)  e.  P.  /\  ( w  .P.  v )  e.  P. )  -> 
( ( z  .P.  u )  +P.  (
w  .P.  v )
)  e.  P. )
4742, 45, 46syl2anc 411 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( (
z  .P.  u )  +P.  ( w  .P.  v
) )  e.  P. )
48 mulclpr 7632 . . . . . . 7  |-  ( ( z  e.  P.  /\  v  e.  P. )  ->  ( z  .P.  v
)  e.  P. )
4940, 29, 48syl2anc 411 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( z  .P.  v )  e.  P. )
50 mulclpr 7632 . . . . . . 7  |-  ( ( w  e.  P.  /\  u  e.  P. )  ->  ( w  .P.  u
)  e.  P. )
5143, 25, 50syl2anc 411 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( w  .P.  u )  e.  P. )
52 addclpr 7597 . . . . . 6  |-  ( ( ( z  .P.  v
)  e.  P.  /\  ( w  .P.  u )  e.  P. )  -> 
( ( z  .P.  v )  +P.  (
w  .P.  u )
)  e.  P. )
5349, 51, 52syl2anc 411 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( (
z  .P.  v )  +P.  ( w  .P.  u
) )  e.  P. )
54 ltsrprg 7807 . . . . 5  |-  ( ( ( ( ( x  .P.  u )  +P.  ( y  .P.  v
) )  e.  P.  /\  ( ( x  .P.  v )  +P.  (
y  .P.  u )
)  e.  P. )  /\  ( ( ( z  .P.  u )  +P.  ( w  .P.  v
) )  e.  P.  /\  ( ( z  .P.  v )  +P.  (
w  .P.  u )
)  e.  P. )
)  ->  ( [ <. ( ( x  .P.  u )  +P.  (
y  .P.  v )
) ,  ( ( x  .P.  v )  +P.  ( y  .P.  u ) ) >. ]  ~R  <R  [ <. (
( z  .P.  u
)  +P.  ( w  .P.  v ) ) ,  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) >. ]  ~R  <->  ( (
( x  .P.  u
)  +P.  ( y  .P.  v ) )  +P.  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) )  <P  (
( ( x  .P.  v )  +P.  (
y  .P.  u )
)  +P.  ( (
z  .P.  u )  +P.  ( w  .P.  v
) ) ) ) )
5533, 39, 47, 53, 54syl22anc 1250 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. ( ( x  .P.  u )  +P.  (
y  .P.  v )
) ,  ( ( x  .P.  v )  +P.  ( y  .P.  u ) ) >. ]  ~R  <R  [ <. (
( z  .P.  u
)  +P.  ( w  .P.  v ) ) ,  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) >. ]  ~R  <->  ( (
( x  .P.  u
)  +P.  ( y  .P.  v ) )  +P.  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) )  <P  (
( ( x  .P.  v )  +P.  (
y  .P.  u )
)  +P.  ( (
z  .P.  u )  +P.  ( w  .P.  v
) ) ) ) )
5623, 55bitrd 188 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <->  ( (
( x  .P.  u
)  +P.  ( y  .P.  v ) )  +P.  ( ( z  .P.  v )  +P.  (
w  .P.  u )
) )  <P  (
( ( x  .P.  v )  +P.  (
y  .P.  u )
)  +P.  ( (
z  .P.  u )  +P.  ( w  .P.  v
) ) ) ) )
57 ltsrprg 7807 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  w )  <P  (
y  +P.  z )
) )
58573adant3 1019 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  w )  <P  (
y  +P.  z )
) )
59 ltsrprg 7807 . . . . . 6  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  <->  ( z  +P.  y ) 
<P  ( w  +P.  x
) ) )
6059ancoms 268 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  <->  ( z  +P.  y ) 
<P  ( w  +P.  x
) ) )
61603adant3 1019 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  <->  ( z  +P.  y ) 
<P  ( w  +P.  x
) ) )
6258, 61orbi12d 794 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) 
<->  ( ( x  +P.  w )  <P  (
y  +P.  z )  \/  ( z  +P.  y
)  <P  ( w  +P.  x ) ) ) )
6318, 56, 623imtr4d 203 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( u  e.  P.  /\  v  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  <R  ( [ <. z ,  w >. ]  ~R  .R  [ <. u ,  v >. ]  ~R  )  ->  ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  \/  [ <. z ,  w >. ]  ~R  <R  [ <. x ,  y >. ]  ~R  ) ) )
641, 7, 13, 17, 633ecoptocl 6678 1  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  (
( A  .R  C
)  <R  ( B  .R  C )  ->  ( A  <R  B  \/  B  <R  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2164   <.cop 3621   class class class wbr 4029  (class class class)co 5918   [cec 6585   P.cnp 7351    +P. cpp 7353    .P. cmp 7354    <P cltp 7355    ~R cer 7356   R.cnr 7357    .R cmr 7362    <R cltr 7363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-i1p 7527  df-iplp 7528  df-imp 7529  df-iltp 7530  df-enr 7786  df-nr 7787  df-mr 7789  df-ltr 7790
This theorem is referenced by:  axpre-mulext  7948
  Copyright terms: Public domain W3C validator