Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltmnqg | Unicode version |
Description: Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of [Gleason] p. 120. (Contributed by Jim Kingdon, 22-Sep-2019.) |
Ref | Expression |
---|---|
ltmnqg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nqqs 7262 | . 2 | |
2 | breq1 3968 | . . 3 | |
3 | oveq2 5829 | . . . 4 | |
4 | 3 | breq1d 3975 | . . 3 |
5 | 2, 4 | bibi12d 234 | . 2 |
6 | breq2 3969 | . . 3 | |
7 | oveq2 5829 | . . . 4 | |
8 | 7 | breq2d 3977 | . . 3 |
9 | 6, 8 | bibi12d 234 | . 2 |
10 | oveq1 5828 | . . . 4 | |
11 | oveq1 5828 | . . . 4 | |
12 | 10, 11 | breq12d 3978 | . . 3 |
13 | 12 | bibi2d 231 | . 2 |
14 | mulclpi 7242 | . . . . . . . 8 | |
15 | 14 | adantl 275 | . . . . . . 7 |
16 | simp1l 1006 | . . . . . . 7 | |
17 | simp2r 1009 | . . . . . . 7 | |
18 | 15, 16, 17 | caovcld 5971 | . . . . . 6 |
19 | simp1r 1007 | . . . . . . 7 | |
20 | simp2l 1008 | . . . . . . 7 | |
21 | 15, 19, 20 | caovcld 5971 | . . . . . 6 |
22 | mulclpi 7242 | . . . . . . 7 | |
23 | 22 | 3ad2ant3 1005 | . . . . . 6 |
24 | ltmpig 7253 | . . . . . 6 | |
25 | 18, 21, 23, 24 | syl3anc 1220 | . . . . 5 |
26 | simp3l 1010 | . . . . . . 7 | |
27 | simp3r 1011 | . . . . . . 7 | |
28 | mulcompig 7245 | . . . . . . . 8 | |
29 | 28 | adantl 275 | . . . . . . 7 |
30 | mulasspig 7246 | . . . . . . . 8 | |
31 | 30 | adantl 275 | . . . . . . 7 |
32 | 26, 16, 27, 29, 31, 17, 15 | caov4d 6002 | . . . . . 6 |
33 | 27, 19, 26, 29, 31, 20, 15 | caov4d 6002 | . . . . . . 7 |
34 | mulcompig 7245 | . . . . . . . . . 10 | |
35 | 34 | oveq1d 5836 | . . . . . . . . 9 |
36 | 35 | ancoms 266 | . . . . . . . 8 |
37 | 36 | 3ad2ant3 1005 | . . . . . . 7 |
38 | 33, 37 | eqtrd 2190 | . . . . . 6 |
39 | 32, 38 | breq12d 3978 | . . . . 5 |
40 | 25, 39 | bitr4d 190 | . . . 4 |
41 | ordpipqqs 7288 | . . . . 5 | |
42 | 41 | 3adant3 1002 | . . . 4 |
43 | 15, 26, 16 | caovcld 5971 | . . . . 5 |
44 | 15, 27, 19 | caovcld 5971 | . . . . 5 |
45 | 15, 26, 20 | caovcld 5971 | . . . . 5 |
46 | 15, 27, 17 | caovcld 5971 | . . . . 5 |
47 | ordpipqqs 7288 | . . . . 5 | |
48 | 43, 44, 45, 46, 47 | syl22anc 1221 | . . . 4 |
49 | 40, 42, 48 | 3bitr4d 219 | . . 3 |
50 | mulpipqqs 7287 | . . . . . 6 | |
51 | 50 | ancoms 266 | . . . . 5 |
52 | 51 | 3adant2 1001 | . . . 4 |
53 | mulpipqqs 7287 | . . . . . 6 | |
54 | 53 | ancoms 266 | . . . . 5 |
55 | 54 | 3adant1 1000 | . . . 4 |
56 | 52, 55 | breq12d 3978 | . . 3 |
57 | 49, 56 | bitr4d 190 | . 2 |
58 | 1, 5, 9, 13, 57 | 3ecoptocl 6566 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wceq 1335 wcel 2128 cop 3563 class class class wbr 3965 (class class class)co 5821 cec 6475 cnpi 7186 cmi 7188 clti 7189 ceq 7193 cnq 7194 cmq 7197 cltq 7199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-iinf 4546 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-eprel 4249 df-id 4253 df-iord 4326 df-on 4328 df-suc 4331 df-iom 4549 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-recs 6249 df-irdg 6314 df-oadd 6364 df-omul 6365 df-er 6477 df-ec 6479 df-qs 6483 df-ni 7218 df-mi 7220 df-lti 7221 df-mpq 7259 df-enq 7261 df-nqqs 7262 df-mqqs 7264 df-ltnqqs 7267 |
This theorem is referenced by: ltmnqi 7317 lt2mulnq 7319 ltaddnq 7321 prarloclemarch 7332 prarloclemarch2 7333 ltrnqg 7334 prarloclemlt 7407 addnqprllem 7441 addnqprulem 7442 appdivnq 7477 mulnqprl 7482 mulnqpru 7483 mullocprlem 7484 mulclpr 7486 distrlem4prl 7498 distrlem4pru 7499 1idprl 7504 1idpru 7505 recexprlem1ssl 7547 recexprlem1ssu 7548 |
Copyright terms: Public domain | W3C validator |