ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmnqg Unicode version

Theorem ltmnqg 6958
Description: Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of [Gleason] p. 120. (Contributed by Jim Kingdon, 22-Sep-2019.)
Assertion
Ref Expression
ltmnqg  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )

Proof of Theorem ltmnqg
Dummy variables  x  y  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 6905 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 breq1 3848 . . 3  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  A  <Q  [
<. z ,  w >. ]  ~Q  ) )
3 oveq2 5660 . . . 4  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( [ <. v ,  u >. ]  ~Q  .Q  [
<. x ,  y >. ]  ~Q  )  =  ( [ <. v ,  u >. ]  ~Q  .Q  A
) )
43breq1d 3855 . . 3  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y
>. ]  ~Q  )  <Q 
( [ <. v ,  u >. ]  ~Q  .Q  [
<. z ,  w >. ]  ~Q  )  <->  ( [ <. v ,  u >. ]  ~Q  .Q  A ) 
<Q  ( [ <. v ,  u >. ]  ~Q  .Q  [
<. z ,  w >. ]  ~Q  ) ) )
52, 4bibi12d 233 . 2  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  ) )  <-> 
( A  <Q  [ <. z ,  w >. ]  ~Q  <->  ( [ <. v ,  u >. ]  ~Q  .Q  A
)  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  ) ) ) )
6 breq2 3849 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( A  <Q  [ <. z ,  w >. ]  ~Q  <->  A 
<Q  B ) )
7 oveq2 5660 . . . 4  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( [ <. v ,  u >. ]  ~Q  .Q  [
<. z ,  w >. ]  ~Q  )  =  ( [ <. v ,  u >. ]  ~Q  .Q  B
) )
87breq2d 3857 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( ( [ <. v ,  u >. ]  ~Q  .Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  <->  ( [ <. v ,  u >. ]  ~Q  .Q  A ) 
<Q  ( [ <. v ,  u >. ]  ~Q  .Q  B ) ) )
96, 8bibi12d 233 . 2  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( ( A  <Q  [
<. z ,  w >. ]  ~Q  <->  ( [ <. v ,  u >. ]  ~Q  .Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  ) )  <->  ( A  <Q  B  <->  ( [ <. v ,  u >. ]  ~Q  .Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  B
) ) ) )
10 oveq1 5659 . . . 4  |-  ( [
<. v ,  u >. ]  ~Q  =  C  -> 
( [ <. v ,  u >. ]  ~Q  .Q  A )  =  ( C  .Q  A ) )
11 oveq1 5659 . . . 4  |-  ( [
<. v ,  u >. ]  ~Q  =  C  -> 
( [ <. v ,  u >. ]  ~Q  .Q  B )  =  ( C  .Q  B ) )
1210, 11breq12d 3858 . . 3  |-  ( [
<. v ,  u >. ]  ~Q  =  C  -> 
( ( [ <. v ,  u >. ]  ~Q  .Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  B
)  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )
1312bibi2d 230 . 2  |-  ( [
<. v ,  u >. ]  ~Q  =  C  -> 
( ( A  <Q  B  <-> 
( [ <. v ,  u >. ]  ~Q  .Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  B
) )  <->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) ) )
14 mulclpi 6885 . . . . . . . 8  |-  ( ( f  e.  N.  /\  g  e.  N. )  ->  ( f  .N  g
)  e.  N. )
1514adantl 271 . . . . . . 7  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N. ) )  -> 
( f  .N  g
)  e.  N. )
16 simp1l 967 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  x  e.  N. )
17 simp2r 970 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  w  e.  N. )
1815, 16, 17caovcld 5798 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( x  .N  w )  e.  N. )
19 simp1r 968 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  y  e.  N. )
20 simp2l 969 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  z  e.  N. )
2115, 19, 20caovcld 5798 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( y  .N  z )  e.  N. )
22 mulclpi 6885 . . . . . . 7  |-  ( ( v  e.  N.  /\  u  e.  N. )  ->  ( v  .N  u
)  e.  N. )
23223ad2ant3 966 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( v  .N  u )  e.  N. )
24 ltmpig 6896 . . . . . 6  |-  ( ( ( x  .N  w
)  e.  N.  /\  ( y  .N  z
)  e.  N.  /\  ( v  .N  u
)  e.  N. )  ->  ( ( x  .N  w )  <N  (
y  .N  z )  <-> 
( ( v  .N  u )  .N  (
x  .N  w ) )  <N  ( (
v  .N  u )  .N  ( y  .N  z ) ) ) )
2518, 21, 23, 24syl3anc 1174 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
x  .N  w ) 
<N  ( y  .N  z
)  <->  ( ( v  .N  u )  .N  ( x  .N  w
) )  <N  (
( v  .N  u
)  .N  ( y  .N  z ) ) ) )
26 simp3l 971 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  v  e.  N. )
27 simp3r 972 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  u  e.  N. )
28 mulcompig 6888 . . . . . . . 8  |-  ( ( f  e.  N.  /\  g  e.  N. )  ->  ( f  .N  g
)  =  ( g  .N  f ) )
2928adantl 271 . . . . . . 7  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N. ) )  -> 
( f  .N  g
)  =  ( g  .N  f ) )
30 mulasspig 6889 . . . . . . . 8  |-  ( ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )  ->  (
( f  .N  g
)  .N  h )  =  ( f  .N  ( g  .N  h
) ) )
3130adantl 271 . . . . . . 7  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N.  /\  h  e.  N. ) )  ->  (
( f  .N  g
)  .N  h )  =  ( f  .N  ( g  .N  h
) ) )
3226, 16, 27, 29, 31, 17, 15caov4d 5829 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
v  .N  x )  .N  ( u  .N  w ) )  =  ( ( v  .N  u )  .N  (
x  .N  w ) ) )
3327, 19, 26, 29, 31, 20, 15caov4d 5829 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
u  .N  y )  .N  ( v  .N  z ) )  =  ( ( u  .N  v )  .N  (
y  .N  z ) ) )
34 mulcompig 6888 . . . . . . . . . 10  |-  ( ( u  e.  N.  /\  v  e.  N. )  ->  ( u  .N  v
)  =  ( v  .N  u ) )
3534oveq1d 5667 . . . . . . . . 9  |-  ( ( u  e.  N.  /\  v  e.  N. )  ->  ( ( u  .N  v )  .N  (
y  .N  z ) )  =  ( ( v  .N  u )  .N  ( y  .N  z ) ) )
3635ancoms 264 . . . . . . . 8  |-  ( ( v  e.  N.  /\  u  e.  N. )  ->  ( ( u  .N  v )  .N  (
y  .N  z ) )  =  ( ( v  .N  u )  .N  ( y  .N  z ) ) )
37363ad2ant3 966 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
u  .N  v )  .N  ( y  .N  z ) )  =  ( ( v  .N  u )  .N  (
y  .N  z ) ) )
3833, 37eqtrd 2120 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
u  .N  y )  .N  ( v  .N  z ) )  =  ( ( v  .N  u )  .N  (
y  .N  z ) ) )
3932, 38breq12d 3858 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( v  .N  x
)  .N  ( u  .N  w ) ) 
<N  ( ( u  .N  y )  .N  (
v  .N  z ) )  <->  ( ( v  .N  u )  .N  ( x  .N  w
) )  <N  (
( v  .N  u
)  .N  ( y  .N  z ) ) ) )
4025, 39bitr4d 189 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
x  .N  w ) 
<N  ( y  .N  z
)  <->  ( ( v  .N  x )  .N  ( u  .N  w
) )  <N  (
( u  .N  y
)  .N  ( v  .N  z ) ) ) )
41 ordpipqqs 6931 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( x  .N  w )  <N  (
y  .N  z ) ) )
42413adant3 963 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( x  .N  w )  <N  (
y  .N  z ) ) )
4315, 26, 16caovcld 5798 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( v  .N  x )  e.  N. )
4415, 27, 19caovcld 5798 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( u  .N  y )  e.  N. )
4515, 26, 20caovcld 5798 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( v  .N  z )  e.  N. )
4615, 27, 17caovcld 5798 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( u  .N  w )  e.  N. )
47 ordpipqqs 6931 . . . . 5  |-  ( ( ( ( v  .N  x )  e.  N.  /\  ( u  .N  y
)  e.  N. )  /\  ( ( v  .N  z )  e.  N.  /\  ( u  .N  w
)  e.  N. )
)  ->  ( [ <. ( v  .N  x
) ,  ( u  .N  y ) >. ]  ~Q  <Q  [ <. (
v  .N  z ) ,  ( u  .N  w ) >. ]  ~Q  <->  ( ( v  .N  x
)  .N  ( u  .N  w ) ) 
<N  ( ( u  .N  y )  .N  (
v  .N  z ) ) ) )
4843, 44, 45, 46, 47syl22anc 1175 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. ( v  .N  x
) ,  ( u  .N  y ) >. ]  ~Q  <Q  [ <. (
v  .N  z ) ,  ( u  .N  w ) >. ]  ~Q  <->  ( ( v  .N  x
)  .N  ( u  .N  w ) ) 
<N  ( ( u  .N  y )  .N  (
v  .N  z ) ) ) )
4940, 42, 483bitr4d 218 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  [ <. (
v  .N  x ) ,  ( u  .N  y ) >. ]  ~Q  <Q  [ <. ( v  .N  z ) ,  ( u  .N  w )
>. ]  ~Q  ) )
50 mulpipqqs 6930 . . . . . 6  |-  ( ( ( v  e.  N.  /\  u  e.  N. )  /\  ( x  e.  N.  /\  y  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  =  [ <. (
v  .N  x ) ,  ( u  .N  y ) >. ]  ~Q  )
5150ancoms 264 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  =  [ <. (
v  .N  x ) ,  ( u  .N  y ) >. ]  ~Q  )
52513adant2 962 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  =  [ <. (
v  .N  x ) ,  ( u  .N  y ) >. ]  ~Q  )
53 mulpipqqs 6930 . . . . . 6  |-  ( ( ( v  e.  N.  /\  u  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
v  .N  z ) ,  ( u  .N  w ) >. ]  ~Q  )
5453ancoms 264 . . . . 5  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
v  .N  z ) ,  ( u  .N  w ) >. ]  ~Q  )
55543adant1 961 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
v  .N  z ) ,  ( u  .N  w ) >. ]  ~Q  )
5652, 55breq12d 3858 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  <->  [ <. (
v  .N  x ) ,  ( u  .N  y ) >. ]  ~Q  <Q  [ <. ( v  .N  z ) ,  ( u  .N  w )
>. ]  ~Q  ) )
5749, 56bitr4d 189 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  ) ) )
581, 5, 9, 13, 573ecoptocl 6379 1  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 924    = wceq 1289    e. wcel 1438   <.cop 3449   class class class wbr 3845  (class class class)co 5652   [cec 6288   N.cnpi 6829    .N cmi 6831    <N clti 6832    ~Q ceq 6836   Q.cnq 6837    .Q cmq 6840    <Q cltq 6842
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-eprel 4116  df-id 4120  df-iord 4193  df-on 4195  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-oadd 6185  df-omul 6186  df-er 6290  df-ec 6292  df-qs 6296  df-ni 6861  df-mi 6863  df-lti 6864  df-mpq 6902  df-enq 6904  df-nqqs 6905  df-mqqs 6907  df-ltnqqs 6910
This theorem is referenced by:  ltmnqi  6960  lt2mulnq  6962  ltaddnq  6964  prarloclemarch  6975  prarloclemarch2  6976  ltrnqg  6977  prarloclemlt  7050  addnqprllem  7084  addnqprulem  7085  appdivnq  7120  mulnqprl  7125  mulnqpru  7126  mullocprlem  7127  mulclpr  7129  distrlem4prl  7141  distrlem4pru  7142  1idprl  7147  1idpru  7148  recexprlem1ssl  7190  recexprlem1ssu  7191
  Copyright terms: Public domain W3C validator