| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltmnqg | Unicode version | ||
| Description: Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of [Gleason] p. 120. (Contributed by Jim Kingdon, 22-Sep-2019.) |
| Ref | Expression |
|---|---|
| ltmnqg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nqqs 7535 |
. 2
| |
| 2 | breq1 4086 |
. . 3
| |
| 3 | oveq2 6009 |
. . . 4
| |
| 4 | 3 | breq1d 4093 |
. . 3
|
| 5 | 2, 4 | bibi12d 235 |
. 2
|
| 6 | breq2 4087 |
. . 3
| |
| 7 | oveq2 6009 |
. . . 4
| |
| 8 | 7 | breq2d 4095 |
. . 3
|
| 9 | 6, 8 | bibi12d 235 |
. 2
|
| 10 | oveq1 6008 |
. . . 4
| |
| 11 | oveq1 6008 |
. . . 4
| |
| 12 | 10, 11 | breq12d 4096 |
. . 3
|
| 13 | 12 | bibi2d 232 |
. 2
|
| 14 | mulclpi 7515 |
. . . . . . . 8
| |
| 15 | 14 | adantl 277 |
. . . . . . 7
|
| 16 | simp1l 1045 |
. . . . . . 7
| |
| 17 | simp2r 1048 |
. . . . . . 7
| |
| 18 | 15, 16, 17 | caovcld 6159 |
. . . . . 6
|
| 19 | simp1r 1046 |
. . . . . . 7
| |
| 20 | simp2l 1047 |
. . . . . . 7
| |
| 21 | 15, 19, 20 | caovcld 6159 |
. . . . . 6
|
| 22 | mulclpi 7515 |
. . . . . . 7
| |
| 23 | 22 | 3ad2ant3 1044 |
. . . . . 6
|
| 24 | ltmpig 7526 |
. . . . . 6
| |
| 25 | 18, 21, 23, 24 | syl3anc 1271 |
. . . . 5
|
| 26 | simp3l 1049 |
. . . . . . 7
| |
| 27 | simp3r 1050 |
. . . . . . 7
| |
| 28 | mulcompig 7518 |
. . . . . . . 8
| |
| 29 | 28 | adantl 277 |
. . . . . . 7
|
| 30 | mulasspig 7519 |
. . . . . . . 8
| |
| 31 | 30 | adantl 277 |
. . . . . . 7
|
| 32 | 26, 16, 27, 29, 31, 17, 15 | caov4d 6190 |
. . . . . 6
|
| 33 | 27, 19, 26, 29, 31, 20, 15 | caov4d 6190 |
. . . . . . 7
|
| 34 | mulcompig 7518 |
. . . . . . . . . 10
| |
| 35 | 34 | oveq1d 6016 |
. . . . . . . . 9
|
| 36 | 35 | ancoms 268 |
. . . . . . . 8
|
| 37 | 36 | 3ad2ant3 1044 |
. . . . . . 7
|
| 38 | 33, 37 | eqtrd 2262 |
. . . . . 6
|
| 39 | 32, 38 | breq12d 4096 |
. . . . 5
|
| 40 | 25, 39 | bitr4d 191 |
. . . 4
|
| 41 | ordpipqqs 7561 |
. . . . 5
| |
| 42 | 41 | 3adant3 1041 |
. . . 4
|
| 43 | 15, 26, 16 | caovcld 6159 |
. . . . 5
|
| 44 | 15, 27, 19 | caovcld 6159 |
. . . . 5
|
| 45 | 15, 26, 20 | caovcld 6159 |
. . . . 5
|
| 46 | 15, 27, 17 | caovcld 6159 |
. . . . 5
|
| 47 | ordpipqqs 7561 |
. . . . 5
| |
| 48 | 43, 44, 45, 46, 47 | syl22anc 1272 |
. . . 4
|
| 49 | 40, 42, 48 | 3bitr4d 220 |
. . 3
|
| 50 | mulpipqqs 7560 |
. . . . . 6
| |
| 51 | 50 | ancoms 268 |
. . . . 5
|
| 52 | 51 | 3adant2 1040 |
. . . 4
|
| 53 | mulpipqqs 7560 |
. . . . . 6
| |
| 54 | 53 | ancoms 268 |
. . . . 5
|
| 55 | 54 | 3adant1 1039 |
. . . 4
|
| 56 | 52, 55 | breq12d 4096 |
. . 3
|
| 57 | 49, 56 | bitr4d 191 |
. 2
|
| 58 | 1, 5, 9, 13, 57 | 3ecoptocl 6771 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-oadd 6566 df-omul 6567 df-er 6680 df-ec 6682 df-qs 6686 df-ni 7491 df-mi 7493 df-lti 7494 df-mpq 7532 df-enq 7534 df-nqqs 7535 df-mqqs 7537 df-ltnqqs 7540 |
| This theorem is referenced by: ltmnqi 7590 lt2mulnq 7592 ltaddnq 7594 prarloclemarch 7605 prarloclemarch2 7606 ltrnqg 7607 prarloclemlt 7680 addnqprllem 7714 addnqprulem 7715 appdivnq 7750 mulnqprl 7755 mulnqpru 7756 mullocprlem 7757 mulclpr 7759 distrlem4prl 7771 distrlem4pru 7772 1idprl 7777 1idpru 7778 recexprlem1ssl 7820 recexprlem1ssu 7821 |
| Copyright terms: Public domain | W3C validator |