| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltmnqg | Unicode version | ||
| Description: Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of [Gleason] p. 120. (Contributed by Jim Kingdon, 22-Sep-2019.) |
| Ref | Expression |
|---|---|
| ltmnqg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nqqs 7432 |
. 2
| |
| 2 | breq1 4037 |
. . 3
| |
| 3 | oveq2 5933 |
. . . 4
| |
| 4 | 3 | breq1d 4044 |
. . 3
|
| 5 | 2, 4 | bibi12d 235 |
. 2
|
| 6 | breq2 4038 |
. . 3
| |
| 7 | oveq2 5933 |
. . . 4
| |
| 8 | 7 | breq2d 4046 |
. . 3
|
| 9 | 6, 8 | bibi12d 235 |
. 2
|
| 10 | oveq1 5932 |
. . . 4
| |
| 11 | oveq1 5932 |
. . . 4
| |
| 12 | 10, 11 | breq12d 4047 |
. . 3
|
| 13 | 12 | bibi2d 232 |
. 2
|
| 14 | mulclpi 7412 |
. . . . . . . 8
| |
| 15 | 14 | adantl 277 |
. . . . . . 7
|
| 16 | simp1l 1023 |
. . . . . . 7
| |
| 17 | simp2r 1026 |
. . . . . . 7
| |
| 18 | 15, 16, 17 | caovcld 6081 |
. . . . . 6
|
| 19 | simp1r 1024 |
. . . . . . 7
| |
| 20 | simp2l 1025 |
. . . . . . 7
| |
| 21 | 15, 19, 20 | caovcld 6081 |
. . . . . 6
|
| 22 | mulclpi 7412 |
. . . . . . 7
| |
| 23 | 22 | 3ad2ant3 1022 |
. . . . . 6
|
| 24 | ltmpig 7423 |
. . . . . 6
| |
| 25 | 18, 21, 23, 24 | syl3anc 1249 |
. . . . 5
|
| 26 | simp3l 1027 |
. . . . . . 7
| |
| 27 | simp3r 1028 |
. . . . . . 7
| |
| 28 | mulcompig 7415 |
. . . . . . . 8
| |
| 29 | 28 | adantl 277 |
. . . . . . 7
|
| 30 | mulasspig 7416 |
. . . . . . . 8
| |
| 31 | 30 | adantl 277 |
. . . . . . 7
|
| 32 | 26, 16, 27, 29, 31, 17, 15 | caov4d 6112 |
. . . . . 6
|
| 33 | 27, 19, 26, 29, 31, 20, 15 | caov4d 6112 |
. . . . . . 7
|
| 34 | mulcompig 7415 |
. . . . . . . . . 10
| |
| 35 | 34 | oveq1d 5940 |
. . . . . . . . 9
|
| 36 | 35 | ancoms 268 |
. . . . . . . 8
|
| 37 | 36 | 3ad2ant3 1022 |
. . . . . . 7
|
| 38 | 33, 37 | eqtrd 2229 |
. . . . . 6
|
| 39 | 32, 38 | breq12d 4047 |
. . . . 5
|
| 40 | 25, 39 | bitr4d 191 |
. . . 4
|
| 41 | ordpipqqs 7458 |
. . . . 5
| |
| 42 | 41 | 3adant3 1019 |
. . . 4
|
| 43 | 15, 26, 16 | caovcld 6081 |
. . . . 5
|
| 44 | 15, 27, 19 | caovcld 6081 |
. . . . 5
|
| 45 | 15, 26, 20 | caovcld 6081 |
. . . . 5
|
| 46 | 15, 27, 17 | caovcld 6081 |
. . . . 5
|
| 47 | ordpipqqs 7458 |
. . . . 5
| |
| 48 | 43, 44, 45, 46, 47 | syl22anc 1250 |
. . . 4
|
| 49 | 40, 42, 48 | 3bitr4d 220 |
. . 3
|
| 50 | mulpipqqs 7457 |
. . . . . 6
| |
| 51 | 50 | ancoms 268 |
. . . . 5
|
| 52 | 51 | 3adant2 1018 |
. . . 4
|
| 53 | mulpipqqs 7457 |
. . . . . 6
| |
| 54 | 53 | ancoms 268 |
. . . . 5
|
| 55 | 54 | 3adant1 1017 |
. . . 4
|
| 56 | 52, 55 | breq12d 4047 |
. . 3
|
| 57 | 49, 56 | bitr4d 191 |
. 2
|
| 58 | 1, 5, 9, 13, 57 | 3ecoptocl 6692 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-oadd 6487 df-omul 6488 df-er 6601 df-ec 6603 df-qs 6607 df-ni 7388 df-mi 7390 df-lti 7391 df-mpq 7429 df-enq 7431 df-nqqs 7432 df-mqqs 7434 df-ltnqqs 7437 |
| This theorem is referenced by: ltmnqi 7487 lt2mulnq 7489 ltaddnq 7491 prarloclemarch 7502 prarloclemarch2 7503 ltrnqg 7504 prarloclemlt 7577 addnqprllem 7611 addnqprulem 7612 appdivnq 7647 mulnqprl 7652 mulnqpru 7653 mullocprlem 7654 mulclpr 7656 distrlem4prl 7668 distrlem4pru 7669 1idprl 7674 1idpru 7675 recexprlem1ssl 7717 recexprlem1ssu 7718 |
| Copyright terms: Public domain | W3C validator |