| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ltmnqg | Unicode version | ||
| Description: Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of [Gleason] p. 120. (Contributed by Jim Kingdon, 22-Sep-2019.) | 
| Ref | Expression | 
|---|---|
| ltmnqg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-nqqs 7415 | 
. 2
 | |
| 2 | breq1 4036 | 
. . 3
 | |
| 3 | oveq2 5930 | 
. . . 4
 | |
| 4 | 3 | breq1d 4043 | 
. . 3
 | 
| 5 | 2, 4 | bibi12d 235 | 
. 2
 | 
| 6 | breq2 4037 | 
. . 3
 | |
| 7 | oveq2 5930 | 
. . . 4
 | |
| 8 | 7 | breq2d 4045 | 
. . 3
 | 
| 9 | 6, 8 | bibi12d 235 | 
. 2
 | 
| 10 | oveq1 5929 | 
. . . 4
 | |
| 11 | oveq1 5929 | 
. . . 4
 | |
| 12 | 10, 11 | breq12d 4046 | 
. . 3
 | 
| 13 | 12 | bibi2d 232 | 
. 2
 | 
| 14 | mulclpi 7395 | 
. . . . . . . 8
 | |
| 15 | 14 | adantl 277 | 
. . . . . . 7
 | 
| 16 | simp1l 1023 | 
. . . . . . 7
 | |
| 17 | simp2r 1026 | 
. . . . . . 7
 | |
| 18 | 15, 16, 17 | caovcld 6077 | 
. . . . . 6
 | 
| 19 | simp1r 1024 | 
. . . . . . 7
 | |
| 20 | simp2l 1025 | 
. . . . . . 7
 | |
| 21 | 15, 19, 20 | caovcld 6077 | 
. . . . . 6
 | 
| 22 | mulclpi 7395 | 
. . . . . . 7
 | |
| 23 | 22 | 3ad2ant3 1022 | 
. . . . . 6
 | 
| 24 | ltmpig 7406 | 
. . . . . 6
 | |
| 25 | 18, 21, 23, 24 | syl3anc 1249 | 
. . . . 5
 | 
| 26 | simp3l 1027 | 
. . . . . . 7
 | |
| 27 | simp3r 1028 | 
. . . . . . 7
 | |
| 28 | mulcompig 7398 | 
. . . . . . . 8
 | |
| 29 | 28 | adantl 277 | 
. . . . . . 7
 | 
| 30 | mulasspig 7399 | 
. . . . . . . 8
 | |
| 31 | 30 | adantl 277 | 
. . . . . . 7
 | 
| 32 | 26, 16, 27, 29, 31, 17, 15 | caov4d 6108 | 
. . . . . 6
 | 
| 33 | 27, 19, 26, 29, 31, 20, 15 | caov4d 6108 | 
. . . . . . 7
 | 
| 34 | mulcompig 7398 | 
. . . . . . . . . 10
 | |
| 35 | 34 | oveq1d 5937 | 
. . . . . . . . 9
 | 
| 36 | 35 | ancoms 268 | 
. . . . . . . 8
 | 
| 37 | 36 | 3ad2ant3 1022 | 
. . . . . . 7
 | 
| 38 | 33, 37 | eqtrd 2229 | 
. . . . . 6
 | 
| 39 | 32, 38 | breq12d 4046 | 
. . . . 5
 | 
| 40 | 25, 39 | bitr4d 191 | 
. . . 4
 | 
| 41 | ordpipqqs 7441 | 
. . . . 5
 | |
| 42 | 41 | 3adant3 1019 | 
. . . 4
 | 
| 43 | 15, 26, 16 | caovcld 6077 | 
. . . . 5
 | 
| 44 | 15, 27, 19 | caovcld 6077 | 
. . . . 5
 | 
| 45 | 15, 26, 20 | caovcld 6077 | 
. . . . 5
 | 
| 46 | 15, 27, 17 | caovcld 6077 | 
. . . . 5
 | 
| 47 | ordpipqqs 7441 | 
. . . . 5
 | |
| 48 | 43, 44, 45, 46, 47 | syl22anc 1250 | 
. . . 4
 | 
| 49 | 40, 42, 48 | 3bitr4d 220 | 
. . 3
 | 
| 50 | mulpipqqs 7440 | 
. . . . . 6
 | |
| 51 | 50 | ancoms 268 | 
. . . . 5
 | 
| 52 | 51 | 3adant2 1018 | 
. . . 4
 | 
| 53 | mulpipqqs 7440 | 
. . . . . 6
 | |
| 54 | 53 | ancoms 268 | 
. . . . 5
 | 
| 55 | 54 | 3adant1 1017 | 
. . . 4
 | 
| 56 | 52, 55 | breq12d 4046 | 
. . 3
 | 
| 57 | 49, 56 | bitr4d 191 | 
. 2
 | 
| 58 | 1, 5, 9, 13, 57 | 3ecoptocl 6683 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-mi 7373 df-lti 7374 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-mqqs 7417 df-ltnqqs 7420 | 
| This theorem is referenced by: ltmnqi 7470 lt2mulnq 7472 ltaddnq 7474 prarloclemarch 7485 prarloclemarch2 7486 ltrnqg 7487 prarloclemlt 7560 addnqprllem 7594 addnqprulem 7595 appdivnq 7630 mulnqprl 7635 mulnqpru 7636 mullocprlem 7637 mulclpr 7639 distrlem4prl 7651 distrlem4pru 7652 1idprl 7657 1idpru 7658 recexprlem1ssl 7700 recexprlem1ssu 7701 | 
| Copyright terms: Public domain | W3C validator |