ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmnqg Unicode version

Theorem ltmnqg 7315
Description: Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of [Gleason] p. 120. (Contributed by Jim Kingdon, 22-Sep-2019.)
Assertion
Ref Expression
ltmnqg  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )

Proof of Theorem ltmnqg
Dummy variables  x  y  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7262 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 breq1 3968 . . 3  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  A  <Q  [
<. z ,  w >. ]  ~Q  ) )
3 oveq2 5829 . . . 4  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( [ <. v ,  u >. ]  ~Q  .Q  [
<. x ,  y >. ]  ~Q  )  =  ( [ <. v ,  u >. ]  ~Q  .Q  A
) )
43breq1d 3975 . . 3  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y
>. ]  ~Q  )  <Q 
( [ <. v ,  u >. ]  ~Q  .Q  [
<. z ,  w >. ]  ~Q  )  <->  ( [ <. v ,  u >. ]  ~Q  .Q  A ) 
<Q  ( [ <. v ,  u >. ]  ~Q  .Q  [
<. z ,  w >. ]  ~Q  ) ) )
52, 4bibi12d 234 . 2  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  ) )  <-> 
( A  <Q  [ <. z ,  w >. ]  ~Q  <->  ( [ <. v ,  u >. ]  ~Q  .Q  A
)  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  ) ) ) )
6 breq2 3969 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( A  <Q  [ <. z ,  w >. ]  ~Q  <->  A 
<Q  B ) )
7 oveq2 5829 . . . 4  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( [ <. v ,  u >. ]  ~Q  .Q  [
<. z ,  w >. ]  ~Q  )  =  ( [ <. v ,  u >. ]  ~Q  .Q  B
) )
87breq2d 3977 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( ( [ <. v ,  u >. ]  ~Q  .Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  <->  ( [ <. v ,  u >. ]  ~Q  .Q  A ) 
<Q  ( [ <. v ,  u >. ]  ~Q  .Q  B ) ) )
96, 8bibi12d 234 . 2  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( ( A  <Q  [
<. z ,  w >. ]  ~Q  <->  ( [ <. v ,  u >. ]  ~Q  .Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  ) )  <->  ( A  <Q  B  <->  ( [ <. v ,  u >. ]  ~Q  .Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  B
) ) ) )
10 oveq1 5828 . . . 4  |-  ( [
<. v ,  u >. ]  ~Q  =  C  -> 
( [ <. v ,  u >. ]  ~Q  .Q  A )  =  ( C  .Q  A ) )
11 oveq1 5828 . . . 4  |-  ( [
<. v ,  u >. ]  ~Q  =  C  -> 
( [ <. v ,  u >. ]  ~Q  .Q  B )  =  ( C  .Q  B ) )
1210, 11breq12d 3978 . . 3  |-  ( [
<. v ,  u >. ]  ~Q  =  C  -> 
( ( [ <. v ,  u >. ]  ~Q  .Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  B
)  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )
1312bibi2d 231 . 2  |-  ( [
<. v ,  u >. ]  ~Q  =  C  -> 
( ( A  <Q  B  <-> 
( [ <. v ,  u >. ]  ~Q  .Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  B
) )  <->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) ) )
14 mulclpi 7242 . . . . . . . 8  |-  ( ( f  e.  N.  /\  g  e.  N. )  ->  ( f  .N  g
)  e.  N. )
1514adantl 275 . . . . . . 7  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N. ) )  -> 
( f  .N  g
)  e.  N. )
16 simp1l 1006 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  x  e.  N. )
17 simp2r 1009 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  w  e.  N. )
1815, 16, 17caovcld 5971 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( x  .N  w )  e.  N. )
19 simp1r 1007 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  y  e.  N. )
20 simp2l 1008 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  z  e.  N. )
2115, 19, 20caovcld 5971 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( y  .N  z )  e.  N. )
22 mulclpi 7242 . . . . . . 7  |-  ( ( v  e.  N.  /\  u  e.  N. )  ->  ( v  .N  u
)  e.  N. )
23223ad2ant3 1005 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( v  .N  u )  e.  N. )
24 ltmpig 7253 . . . . . 6  |-  ( ( ( x  .N  w
)  e.  N.  /\  ( y  .N  z
)  e.  N.  /\  ( v  .N  u
)  e.  N. )  ->  ( ( x  .N  w )  <N  (
y  .N  z )  <-> 
( ( v  .N  u )  .N  (
x  .N  w ) )  <N  ( (
v  .N  u )  .N  ( y  .N  z ) ) ) )
2518, 21, 23, 24syl3anc 1220 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
x  .N  w ) 
<N  ( y  .N  z
)  <->  ( ( v  .N  u )  .N  ( x  .N  w
) )  <N  (
( v  .N  u
)  .N  ( y  .N  z ) ) ) )
26 simp3l 1010 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  v  e.  N. )
27 simp3r 1011 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  u  e.  N. )
28 mulcompig 7245 . . . . . . . 8  |-  ( ( f  e.  N.  /\  g  e.  N. )  ->  ( f  .N  g
)  =  ( g  .N  f ) )
2928adantl 275 . . . . . . 7  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N. ) )  -> 
( f  .N  g
)  =  ( g  .N  f ) )
30 mulasspig 7246 . . . . . . . 8  |-  ( ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )  ->  (
( f  .N  g
)  .N  h )  =  ( f  .N  ( g  .N  h
) ) )
3130adantl 275 . . . . . . 7  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N.  /\  h  e.  N. ) )  ->  (
( f  .N  g
)  .N  h )  =  ( f  .N  ( g  .N  h
) ) )
3226, 16, 27, 29, 31, 17, 15caov4d 6002 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
v  .N  x )  .N  ( u  .N  w ) )  =  ( ( v  .N  u )  .N  (
x  .N  w ) ) )
3327, 19, 26, 29, 31, 20, 15caov4d 6002 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
u  .N  y )  .N  ( v  .N  z ) )  =  ( ( u  .N  v )  .N  (
y  .N  z ) ) )
34 mulcompig 7245 . . . . . . . . . 10  |-  ( ( u  e.  N.  /\  v  e.  N. )  ->  ( u  .N  v
)  =  ( v  .N  u ) )
3534oveq1d 5836 . . . . . . . . 9  |-  ( ( u  e.  N.  /\  v  e.  N. )  ->  ( ( u  .N  v )  .N  (
y  .N  z ) )  =  ( ( v  .N  u )  .N  ( y  .N  z ) ) )
3635ancoms 266 . . . . . . . 8  |-  ( ( v  e.  N.  /\  u  e.  N. )  ->  ( ( u  .N  v )  .N  (
y  .N  z ) )  =  ( ( v  .N  u )  .N  ( y  .N  z ) ) )
37363ad2ant3 1005 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
u  .N  v )  .N  ( y  .N  z ) )  =  ( ( v  .N  u )  .N  (
y  .N  z ) ) )
3833, 37eqtrd 2190 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
u  .N  y )  .N  ( v  .N  z ) )  =  ( ( v  .N  u )  .N  (
y  .N  z ) ) )
3932, 38breq12d 3978 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( v  .N  x
)  .N  ( u  .N  w ) ) 
<N  ( ( u  .N  y )  .N  (
v  .N  z ) )  <->  ( ( v  .N  u )  .N  ( x  .N  w
) )  <N  (
( v  .N  u
)  .N  ( y  .N  z ) ) ) )
4025, 39bitr4d 190 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
x  .N  w ) 
<N  ( y  .N  z
)  <->  ( ( v  .N  x )  .N  ( u  .N  w
) )  <N  (
( u  .N  y
)  .N  ( v  .N  z ) ) ) )
41 ordpipqqs 7288 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( x  .N  w )  <N  (
y  .N  z ) ) )
42413adant3 1002 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( x  .N  w )  <N  (
y  .N  z ) ) )
4315, 26, 16caovcld 5971 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( v  .N  x )  e.  N. )
4415, 27, 19caovcld 5971 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( u  .N  y )  e.  N. )
4515, 26, 20caovcld 5971 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( v  .N  z )  e.  N. )
4615, 27, 17caovcld 5971 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( u  .N  w )  e.  N. )
47 ordpipqqs 7288 . . . . 5  |-  ( ( ( ( v  .N  x )  e.  N.  /\  ( u  .N  y
)  e.  N. )  /\  ( ( v  .N  z )  e.  N.  /\  ( u  .N  w
)  e.  N. )
)  ->  ( [ <. ( v  .N  x
) ,  ( u  .N  y ) >. ]  ~Q  <Q  [ <. (
v  .N  z ) ,  ( u  .N  w ) >. ]  ~Q  <->  ( ( v  .N  x
)  .N  ( u  .N  w ) ) 
<N  ( ( u  .N  y )  .N  (
v  .N  z ) ) ) )
4843, 44, 45, 46, 47syl22anc 1221 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. ( v  .N  x
) ,  ( u  .N  y ) >. ]  ~Q  <Q  [ <. (
v  .N  z ) ,  ( u  .N  w ) >. ]  ~Q  <->  ( ( v  .N  x
)  .N  ( u  .N  w ) ) 
<N  ( ( u  .N  y )  .N  (
v  .N  z ) ) ) )
4940, 42, 483bitr4d 219 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  [ <. (
v  .N  x ) ,  ( u  .N  y ) >. ]  ~Q  <Q  [ <. ( v  .N  z ) ,  ( u  .N  w )
>. ]  ~Q  ) )
50 mulpipqqs 7287 . . . . . 6  |-  ( ( ( v  e.  N.  /\  u  e.  N. )  /\  ( x  e.  N.  /\  y  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  =  [ <. (
v  .N  x ) ,  ( u  .N  y ) >. ]  ~Q  )
5150ancoms 266 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  =  [ <. (
v  .N  x ) ,  ( u  .N  y ) >. ]  ~Q  )
52513adant2 1001 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  =  [ <. (
v  .N  x ) ,  ( u  .N  y ) >. ]  ~Q  )
53 mulpipqqs 7287 . . . . . 6  |-  ( ( ( v  e.  N.  /\  u  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
v  .N  z ) ,  ( u  .N  w ) >. ]  ~Q  )
5453ancoms 266 . . . . 5  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
v  .N  z ) ,  ( u  .N  w ) >. ]  ~Q  )
55543adant1 1000 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
v  .N  z ) ,  ( u  .N  w ) >. ]  ~Q  )
5652, 55breq12d 3978 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  )  <->  [ <. (
v  .N  x ) ,  ( u  .N  y ) >. ]  ~Q  <Q  [ <. ( v  .N  z ) ,  ( u  .N  w )
>. ]  ~Q  ) )
5749, 56bitr4d 190 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. x ,  y >. ]  ~Q  )  <Q  ( [ <. v ,  u >. ]  ~Q  .Q  [ <. z ,  w >. ]  ~Q  ) ) )
581, 5, 9, 13, 573ecoptocl 6566 1  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  .Q  A )  <Q  ( C  .Q  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1335    e. wcel 2128   <.cop 3563   class class class wbr 3965  (class class class)co 5821   [cec 6475   N.cnpi 7186    .N cmi 7188    <N clti 7189    ~Q ceq 7193   Q.cnq 7194    .Q cmq 7197    <Q cltq 7199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-eprel 4249  df-id 4253  df-iord 4326  df-on 4328  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-irdg 6314  df-oadd 6364  df-omul 6365  df-er 6477  df-ec 6479  df-qs 6483  df-ni 7218  df-mi 7220  df-lti 7221  df-mpq 7259  df-enq 7261  df-nqqs 7262  df-mqqs 7264  df-ltnqqs 7267
This theorem is referenced by:  ltmnqi  7317  lt2mulnq  7319  ltaddnq  7321  prarloclemarch  7332  prarloclemarch2  7333  ltrnqg  7334  prarloclemlt  7407  addnqprllem  7441  addnqprulem  7442  appdivnq  7477  mulnqprl  7482  mulnqpru  7483  mullocprlem  7484  mulclpr  7486  distrlem4prl  7498  distrlem4pru  7499  1idprl  7504  1idpru  7505  recexprlem1ssl  7547  recexprlem1ssu  7548
  Copyright terms: Public domain W3C validator