| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltmnqg | Unicode version | ||
| Description: Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of [Gleason] p. 120. (Contributed by Jim Kingdon, 22-Sep-2019.) |
| Ref | Expression |
|---|---|
| ltmnqg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nqqs 7496 |
. 2
| |
| 2 | breq1 4062 |
. . 3
| |
| 3 | oveq2 5975 |
. . . 4
| |
| 4 | 3 | breq1d 4069 |
. . 3
|
| 5 | 2, 4 | bibi12d 235 |
. 2
|
| 6 | breq2 4063 |
. . 3
| |
| 7 | oveq2 5975 |
. . . 4
| |
| 8 | 7 | breq2d 4071 |
. . 3
|
| 9 | 6, 8 | bibi12d 235 |
. 2
|
| 10 | oveq1 5974 |
. . . 4
| |
| 11 | oveq1 5974 |
. . . 4
| |
| 12 | 10, 11 | breq12d 4072 |
. . 3
|
| 13 | 12 | bibi2d 232 |
. 2
|
| 14 | mulclpi 7476 |
. . . . . . . 8
| |
| 15 | 14 | adantl 277 |
. . . . . . 7
|
| 16 | simp1l 1024 |
. . . . . . 7
| |
| 17 | simp2r 1027 |
. . . . . . 7
| |
| 18 | 15, 16, 17 | caovcld 6123 |
. . . . . 6
|
| 19 | simp1r 1025 |
. . . . . . 7
| |
| 20 | simp2l 1026 |
. . . . . . 7
| |
| 21 | 15, 19, 20 | caovcld 6123 |
. . . . . 6
|
| 22 | mulclpi 7476 |
. . . . . . 7
| |
| 23 | 22 | 3ad2ant3 1023 |
. . . . . 6
|
| 24 | ltmpig 7487 |
. . . . . 6
| |
| 25 | 18, 21, 23, 24 | syl3anc 1250 |
. . . . 5
|
| 26 | simp3l 1028 |
. . . . . . 7
| |
| 27 | simp3r 1029 |
. . . . . . 7
| |
| 28 | mulcompig 7479 |
. . . . . . . 8
| |
| 29 | 28 | adantl 277 |
. . . . . . 7
|
| 30 | mulasspig 7480 |
. . . . . . . 8
| |
| 31 | 30 | adantl 277 |
. . . . . . 7
|
| 32 | 26, 16, 27, 29, 31, 17, 15 | caov4d 6154 |
. . . . . 6
|
| 33 | 27, 19, 26, 29, 31, 20, 15 | caov4d 6154 |
. . . . . . 7
|
| 34 | mulcompig 7479 |
. . . . . . . . . 10
| |
| 35 | 34 | oveq1d 5982 |
. . . . . . . . 9
|
| 36 | 35 | ancoms 268 |
. . . . . . . 8
|
| 37 | 36 | 3ad2ant3 1023 |
. . . . . . 7
|
| 38 | 33, 37 | eqtrd 2240 |
. . . . . 6
|
| 39 | 32, 38 | breq12d 4072 |
. . . . 5
|
| 40 | 25, 39 | bitr4d 191 |
. . . 4
|
| 41 | ordpipqqs 7522 |
. . . . 5
| |
| 42 | 41 | 3adant3 1020 |
. . . 4
|
| 43 | 15, 26, 16 | caovcld 6123 |
. . . . 5
|
| 44 | 15, 27, 19 | caovcld 6123 |
. . . . 5
|
| 45 | 15, 26, 20 | caovcld 6123 |
. . . . 5
|
| 46 | 15, 27, 17 | caovcld 6123 |
. . . . 5
|
| 47 | ordpipqqs 7522 |
. . . . 5
| |
| 48 | 43, 44, 45, 46, 47 | syl22anc 1251 |
. . . 4
|
| 49 | 40, 42, 48 | 3bitr4d 220 |
. . 3
|
| 50 | mulpipqqs 7521 |
. . . . . 6
| |
| 51 | 50 | ancoms 268 |
. . . . 5
|
| 52 | 51 | 3adant2 1019 |
. . . 4
|
| 53 | mulpipqqs 7521 |
. . . . . 6
| |
| 54 | 53 | ancoms 268 |
. . . . 5
|
| 55 | 54 | 3adant1 1018 |
. . . 4
|
| 56 | 52, 55 | breq12d 4072 |
. . 3
|
| 57 | 49, 56 | bitr4d 191 |
. 2
|
| 58 | 1, 5, 9, 13, 57 | 3ecoptocl 6734 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-eprel 4354 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-oadd 6529 df-omul 6530 df-er 6643 df-ec 6645 df-qs 6649 df-ni 7452 df-mi 7454 df-lti 7455 df-mpq 7493 df-enq 7495 df-nqqs 7496 df-mqqs 7498 df-ltnqqs 7501 |
| This theorem is referenced by: ltmnqi 7551 lt2mulnq 7553 ltaddnq 7555 prarloclemarch 7566 prarloclemarch2 7567 ltrnqg 7568 prarloclemlt 7641 addnqprllem 7675 addnqprulem 7676 appdivnq 7711 mulnqprl 7716 mulnqpru 7717 mullocprlem 7718 mulclpr 7720 distrlem4prl 7732 distrlem4pru 7733 1idprl 7738 1idpru 7739 recexprlem1ssl 7781 recexprlem1ssu 7782 |
| Copyright terms: Public domain | W3C validator |