| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltmnqg | Unicode version | ||
| Description: Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of [Gleason] p. 120. (Contributed by Jim Kingdon, 22-Sep-2019.) |
| Ref | Expression |
|---|---|
| ltmnqg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nqqs 7463 |
. 2
| |
| 2 | breq1 4048 |
. . 3
| |
| 3 | oveq2 5954 |
. . . 4
| |
| 4 | 3 | breq1d 4055 |
. . 3
|
| 5 | 2, 4 | bibi12d 235 |
. 2
|
| 6 | breq2 4049 |
. . 3
| |
| 7 | oveq2 5954 |
. . . 4
| |
| 8 | 7 | breq2d 4057 |
. . 3
|
| 9 | 6, 8 | bibi12d 235 |
. 2
|
| 10 | oveq1 5953 |
. . . 4
| |
| 11 | oveq1 5953 |
. . . 4
| |
| 12 | 10, 11 | breq12d 4058 |
. . 3
|
| 13 | 12 | bibi2d 232 |
. 2
|
| 14 | mulclpi 7443 |
. . . . . . . 8
| |
| 15 | 14 | adantl 277 |
. . . . . . 7
|
| 16 | simp1l 1024 |
. . . . . . 7
| |
| 17 | simp2r 1027 |
. . . . . . 7
| |
| 18 | 15, 16, 17 | caovcld 6102 |
. . . . . 6
|
| 19 | simp1r 1025 |
. . . . . . 7
| |
| 20 | simp2l 1026 |
. . . . . . 7
| |
| 21 | 15, 19, 20 | caovcld 6102 |
. . . . . 6
|
| 22 | mulclpi 7443 |
. . . . . . 7
| |
| 23 | 22 | 3ad2ant3 1023 |
. . . . . 6
|
| 24 | ltmpig 7454 |
. . . . . 6
| |
| 25 | 18, 21, 23, 24 | syl3anc 1250 |
. . . . 5
|
| 26 | simp3l 1028 |
. . . . . . 7
| |
| 27 | simp3r 1029 |
. . . . . . 7
| |
| 28 | mulcompig 7446 |
. . . . . . . 8
| |
| 29 | 28 | adantl 277 |
. . . . . . 7
|
| 30 | mulasspig 7447 |
. . . . . . . 8
| |
| 31 | 30 | adantl 277 |
. . . . . . 7
|
| 32 | 26, 16, 27, 29, 31, 17, 15 | caov4d 6133 |
. . . . . 6
|
| 33 | 27, 19, 26, 29, 31, 20, 15 | caov4d 6133 |
. . . . . . 7
|
| 34 | mulcompig 7446 |
. . . . . . . . . 10
| |
| 35 | 34 | oveq1d 5961 |
. . . . . . . . 9
|
| 36 | 35 | ancoms 268 |
. . . . . . . 8
|
| 37 | 36 | 3ad2ant3 1023 |
. . . . . . 7
|
| 38 | 33, 37 | eqtrd 2238 |
. . . . . 6
|
| 39 | 32, 38 | breq12d 4058 |
. . . . 5
|
| 40 | 25, 39 | bitr4d 191 |
. . . 4
|
| 41 | ordpipqqs 7489 |
. . . . 5
| |
| 42 | 41 | 3adant3 1020 |
. . . 4
|
| 43 | 15, 26, 16 | caovcld 6102 |
. . . . 5
|
| 44 | 15, 27, 19 | caovcld 6102 |
. . . . 5
|
| 45 | 15, 26, 20 | caovcld 6102 |
. . . . 5
|
| 46 | 15, 27, 17 | caovcld 6102 |
. . . . 5
|
| 47 | ordpipqqs 7489 |
. . . . 5
| |
| 48 | 43, 44, 45, 46, 47 | syl22anc 1251 |
. . . 4
|
| 49 | 40, 42, 48 | 3bitr4d 220 |
. . 3
|
| 50 | mulpipqqs 7488 |
. . . . . 6
| |
| 51 | 50 | ancoms 268 |
. . . . 5
|
| 52 | 51 | 3adant2 1019 |
. . . 4
|
| 53 | mulpipqqs 7488 |
. . . . . 6
| |
| 54 | 53 | ancoms 268 |
. . . . 5
|
| 55 | 54 | 3adant1 1018 |
. . . 4
|
| 56 | 52, 55 | breq12d 4058 |
. . 3
|
| 57 | 49, 56 | bitr4d 191 |
. 2
|
| 58 | 1, 5, 9, 13, 57 | 3ecoptocl 6713 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-eprel 4337 df-id 4341 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-irdg 6458 df-oadd 6508 df-omul 6509 df-er 6622 df-ec 6624 df-qs 6628 df-ni 7419 df-mi 7421 df-lti 7422 df-mpq 7460 df-enq 7462 df-nqqs 7463 df-mqqs 7465 df-ltnqqs 7468 |
| This theorem is referenced by: ltmnqi 7518 lt2mulnq 7520 ltaddnq 7522 prarloclemarch 7533 prarloclemarch2 7534 ltrnqg 7535 prarloclemlt 7608 addnqprllem 7642 addnqprulem 7643 appdivnq 7678 mulnqprl 7683 mulnqpru 7684 mullocprlem 7685 mulclpr 7687 distrlem4prl 7699 distrlem4pru 7700 1idprl 7705 1idpru 7706 recexprlem1ssl 7748 recexprlem1ssu 7749 |
| Copyright terms: Public domain | W3C validator |