ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ecoptocl GIF version

Theorem 3ecoptocl 6590
Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 9-Aug-1995.)
Hypotheses
Ref Expression
3ecoptocl.1 𝑆 = ((𝐷 × 𝐷) / 𝑅)
3ecoptocl.2 ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑𝜓))
3ecoptocl.3 ([⟨𝑧, 𝑤⟩]𝑅 = 𝐵 → (𝜓𝜒))
3ecoptocl.4 ([⟨𝑣, 𝑢⟩]𝑅 = 𝐶 → (𝜒𝜃))
3ecoptocl.5 (((𝑥𝐷𝑦𝐷) ∧ (𝑧𝐷𝑤𝐷) ∧ (𝑣𝐷𝑢𝐷)) → 𝜑)
Assertion
Ref Expression
3ecoptocl ((𝐴𝑆𝐵𝑆𝐶𝑆) → 𝜃)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝐴   𝑧,𝐵,𝑤,𝑣,𝑢   𝑣,𝐶,𝑢   𝑥,𝐷,𝑦,𝑧,𝑤,𝑣,𝑢   𝑧,𝑆,𝑤,𝑣,𝑢   𝑥,𝑅,𝑦,𝑧,𝑤,𝑣,𝑢   𝜓,𝑥,𝑦   𝜒,𝑧,𝑤   𝜃,𝑣,𝑢
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝜓(𝑧,𝑤,𝑣,𝑢)   𝜒(𝑥,𝑦,𝑣,𝑢)   𝜃(𝑥,𝑦,𝑧,𝑤)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝑆(𝑥,𝑦)

Proof of Theorem 3ecoptocl
StepHypRef Expression
1 3ecoptocl.1 . . . 4 𝑆 = ((𝐷 × 𝐷) / 𝑅)
2 3ecoptocl.3 . . . . 5 ([⟨𝑧, 𝑤⟩]𝑅 = 𝐵 → (𝜓𝜒))
32imbi2d 229 . . . 4 ([⟨𝑧, 𝑤⟩]𝑅 = 𝐵 → ((𝐴𝑆𝜓) ↔ (𝐴𝑆𝜒)))
4 3ecoptocl.4 . . . . 5 ([⟨𝑣, 𝑢⟩]𝑅 = 𝐶 → (𝜒𝜃))
54imbi2d 229 . . . 4 ([⟨𝑣, 𝑢⟩]𝑅 = 𝐶 → ((𝐴𝑆𝜒) ↔ (𝐴𝑆𝜃)))
6 3ecoptocl.2 . . . . . . 7 ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑𝜓))
76imbi2d 229 . . . . . 6 ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → ((((𝑧𝐷𝑤𝐷) ∧ (𝑣𝐷𝑢𝐷)) → 𝜑) ↔ (((𝑧𝐷𝑤𝐷) ∧ (𝑣𝐷𝑢𝐷)) → 𝜓)))
8 3ecoptocl.5 . . . . . . 7 (((𝑥𝐷𝑦𝐷) ∧ (𝑧𝐷𝑤𝐷) ∧ (𝑣𝐷𝑢𝐷)) → 𝜑)
983expib 1196 . . . . . 6 ((𝑥𝐷𝑦𝐷) → (((𝑧𝐷𝑤𝐷) ∧ (𝑣𝐷𝑢𝐷)) → 𝜑))
101, 7, 9ecoptocl 6588 . . . . 5 (𝐴𝑆 → (((𝑧𝐷𝑤𝐷) ∧ (𝑣𝐷𝑢𝐷)) → 𝜓))
1110com12 30 . . . 4 (((𝑧𝐷𝑤𝐷) ∧ (𝑣𝐷𝑢𝐷)) → (𝐴𝑆𝜓))
121, 3, 5, 112ecoptocl 6589 . . 3 ((𝐵𝑆𝐶𝑆) → (𝐴𝑆𝜃))
1312com12 30 . 2 (𝐴𝑆 → ((𝐵𝑆𝐶𝑆) → 𝜃))
14133impib 1191 1 ((𝐴𝑆𝐵𝑆𝐶𝑆) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  cop 3579   × cxp 4602  [cec 6499   / cqs 6500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-ec 6503  df-qs 6507
This theorem is referenced by:  ecovass  6610  ecoviass  6611  ecovdi  6612  ecovidi  6613  ltsonq  7339  ltanqg  7341  ltmnqg  7342  lttrsr  7703  ltsosr  7705  ltasrg  7711  mulextsr1  7722
  Copyright terms: Public domain W3C validator