| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3ecoptocl | GIF version | ||
| Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 9-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3ecoptocl.1 | ⊢ 𝑆 = ((𝐷 × 𝐷) / 𝑅) |
| 3ecoptocl.2 | ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) |
| 3ecoptocl.3 | ⊢ ([〈𝑧, 𝑤〉]𝑅 = 𝐵 → (𝜓 ↔ 𝜒)) |
| 3ecoptocl.4 | ⊢ ([〈𝑣, 𝑢〉]𝑅 = 𝐶 → (𝜒 ↔ 𝜃)) |
| 3ecoptocl.5 | ⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜑) |
| Ref | Expression |
|---|---|
| 3ecoptocl | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ecoptocl.1 | . . . 4 ⊢ 𝑆 = ((𝐷 × 𝐷) / 𝑅) | |
| 2 | 3ecoptocl.3 | . . . . 5 ⊢ ([〈𝑧, 𝑤〉]𝑅 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | imbi2d 230 | . . . 4 ⊢ ([〈𝑧, 𝑤〉]𝑅 = 𝐵 → ((𝐴 ∈ 𝑆 → 𝜓) ↔ (𝐴 ∈ 𝑆 → 𝜒))) |
| 4 | 3ecoptocl.4 | . . . . 5 ⊢ ([〈𝑣, 𝑢〉]𝑅 = 𝐶 → (𝜒 ↔ 𝜃)) | |
| 5 | 4 | imbi2d 230 | . . . 4 ⊢ ([〈𝑣, 𝑢〉]𝑅 = 𝐶 → ((𝐴 ∈ 𝑆 → 𝜒) ↔ (𝐴 ∈ 𝑆 → 𝜃))) |
| 6 | 3ecoptocl.2 | . . . . . . 7 ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | 6 | imbi2d 230 | . . . . . 6 ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → ((((𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜑) ↔ (((𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜓))) |
| 8 | 3ecoptocl.5 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜑) | |
| 9 | 8 | 3expib 1208 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (((𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜑)) |
| 10 | 1, 7, 9 | ecoptocl 6690 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → (((𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜓)) |
| 11 | 10 | com12 30 | . . . 4 ⊢ (((𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → (𝐴 ∈ 𝑆 → 𝜓)) |
| 12 | 1, 3, 5, 11 | 2ecoptocl 6691 | . . 3 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴 ∈ 𝑆 → 𝜃)) |
| 13 | 12 | com12 30 | . 2 ⊢ (𝐴 ∈ 𝑆 → ((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 𝜃)) |
| 14 | 13 | 3impib 1203 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 〈cop 3626 × cxp 4662 [cec 6599 / cqs 6600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-ec 6603 df-qs 6607 |
| This theorem is referenced by: ecovass 6712 ecoviass 6713 ecovdi 6714 ecovidi 6715 ltsonq 7482 ltanqg 7484 ltmnqg 7485 lttrsr 7846 ltsosr 7848 ltasrg 7854 mulextsr1 7865 |
| Copyright terms: Public domain | W3C validator |