![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3ecoptocl | GIF version |
Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 9-Aug-1995.) |
Ref | Expression |
---|---|
3ecoptocl.1 | ⊢ 𝑆 = ((𝐷 × 𝐷) / 𝑅) |
3ecoptocl.2 | ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) |
3ecoptocl.3 | ⊢ ([〈𝑧, 𝑤〉]𝑅 = 𝐵 → (𝜓 ↔ 𝜒)) |
3ecoptocl.4 | ⊢ ([〈𝑣, 𝑢〉]𝑅 = 𝐶 → (𝜒 ↔ 𝜃)) |
3ecoptocl.5 | ⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜑) |
Ref | Expression |
---|---|
3ecoptocl | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ecoptocl.1 | . . . 4 ⊢ 𝑆 = ((𝐷 × 𝐷) / 𝑅) | |
2 | 3ecoptocl.3 | . . . . 5 ⊢ ([〈𝑧, 𝑤〉]𝑅 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | 2 | imbi2d 230 | . . . 4 ⊢ ([〈𝑧, 𝑤〉]𝑅 = 𝐵 → ((𝐴 ∈ 𝑆 → 𝜓) ↔ (𝐴 ∈ 𝑆 → 𝜒))) |
4 | 3ecoptocl.4 | . . . . 5 ⊢ ([〈𝑣, 𝑢〉]𝑅 = 𝐶 → (𝜒 ↔ 𝜃)) | |
5 | 4 | imbi2d 230 | . . . 4 ⊢ ([〈𝑣, 𝑢〉]𝑅 = 𝐶 → ((𝐴 ∈ 𝑆 → 𝜒) ↔ (𝐴 ∈ 𝑆 → 𝜃))) |
6 | 3ecoptocl.2 | . . . . . . 7 ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) | |
7 | 6 | imbi2d 230 | . . . . . 6 ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → ((((𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜑) ↔ (((𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜓))) |
8 | 3ecoptocl.5 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜑) | |
9 | 8 | 3expib 1208 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (((𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜑)) |
10 | 1, 7, 9 | ecoptocl 6676 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → (((𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜓)) |
11 | 10 | com12 30 | . . . 4 ⊢ (((𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → (𝐴 ∈ 𝑆 → 𝜓)) |
12 | 1, 3, 5, 11 | 2ecoptocl 6677 | . . 3 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴 ∈ 𝑆 → 𝜃)) |
13 | 12 | com12 30 | . 2 ⊢ (𝐴 ∈ 𝑆 → ((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 𝜃)) |
14 | 13 | 3impib 1203 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 〈cop 3621 × cxp 4657 [cec 6585 / cqs 6586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-cnv 4667 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-ec 6589 df-qs 6593 |
This theorem is referenced by: ecovass 6698 ecoviass 6699 ecovdi 6700 ecovidi 6701 ltsonq 7458 ltanqg 7460 ltmnqg 7461 lttrsr 7822 ltsosr 7824 ltasrg 7830 mulextsr1 7841 |
Copyright terms: Public domain | W3C validator |