![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3ecoptocl | GIF version |
Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 9-Aug-1995.) |
Ref | Expression |
---|---|
3ecoptocl.1 | ⊢ 𝑆 = ((𝐷 × 𝐷) / 𝑅) |
3ecoptocl.2 | ⊢ ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) |
3ecoptocl.3 | ⊢ ([⟨𝑧, 𝑤⟩]𝑅 = 𝐵 → (𝜓 ↔ 𝜒)) |
3ecoptocl.4 | ⊢ ([⟨𝑣, 𝑢⟩]𝑅 = 𝐶 → (𝜒 ↔ 𝜃)) |
3ecoptocl.5 | ⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜑) |
Ref | Expression |
---|---|
3ecoptocl | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ecoptocl.1 | . . . 4 ⊢ 𝑆 = ((𝐷 × 𝐷) / 𝑅) | |
2 | 3ecoptocl.3 | . . . . 5 ⊢ ([⟨𝑧, 𝑤⟩]𝑅 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | 2 | imbi2d 230 | . . . 4 ⊢ ([⟨𝑧, 𝑤⟩]𝑅 = 𝐵 → ((𝐴 ∈ 𝑆 → 𝜓) ↔ (𝐴 ∈ 𝑆 → 𝜒))) |
4 | 3ecoptocl.4 | . . . . 5 ⊢ ([⟨𝑣, 𝑢⟩]𝑅 = 𝐶 → (𝜒 ↔ 𝜃)) | |
5 | 4 | imbi2d 230 | . . . 4 ⊢ ([⟨𝑣, 𝑢⟩]𝑅 = 𝐶 → ((𝐴 ∈ 𝑆 → 𝜒) ↔ (𝐴 ∈ 𝑆 → 𝜃))) |
6 | 3ecoptocl.2 | . . . . . . 7 ⊢ ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) | |
7 | 6 | imbi2d 230 | . . . . . 6 ⊢ ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → ((((𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜑) ↔ (((𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜓))) |
8 | 3ecoptocl.5 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜑) | |
9 | 8 | 3expib 1206 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (((𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜑)) |
10 | 1, 7, 9 | ecoptocl 6624 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → (((𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜓)) |
11 | 10 | com12 30 | . . . 4 ⊢ (((𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → (𝐴 ∈ 𝑆 → 𝜓)) |
12 | 1, 3, 5, 11 | 2ecoptocl 6625 | . . 3 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴 ∈ 𝑆 → 𝜃)) |
13 | 12 | com12 30 | . 2 ⊢ (𝐴 ∈ 𝑆 → ((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 𝜃)) |
14 | 13 | 3impib 1201 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ⟨cop 3597 × cxp 4626 [cec 6535 / cqs 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-xp 4634 df-cnv 4636 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-ec 6539 df-qs 6543 |
This theorem is referenced by: ecovass 6646 ecoviass 6647 ecovdi 6648 ecovidi 6649 ltsonq 7399 ltanqg 7401 ltmnqg 7402 lttrsr 7763 ltsosr 7765 ltasrg 7771 mulextsr1 7782 |
Copyright terms: Public domain | W3C validator |