| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3ecoptocl | GIF version | ||
| Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 9-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3ecoptocl.1 | ⊢ 𝑆 = ((𝐷 × 𝐷) / 𝑅) |
| 3ecoptocl.2 | ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) |
| 3ecoptocl.3 | ⊢ ([〈𝑧, 𝑤〉]𝑅 = 𝐵 → (𝜓 ↔ 𝜒)) |
| 3ecoptocl.4 | ⊢ ([〈𝑣, 𝑢〉]𝑅 = 𝐶 → (𝜒 ↔ 𝜃)) |
| 3ecoptocl.5 | ⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜑) |
| Ref | Expression |
|---|---|
| 3ecoptocl | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ecoptocl.1 | . . . 4 ⊢ 𝑆 = ((𝐷 × 𝐷) / 𝑅) | |
| 2 | 3ecoptocl.3 | . . . . 5 ⊢ ([〈𝑧, 𝑤〉]𝑅 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | imbi2d 230 | . . . 4 ⊢ ([〈𝑧, 𝑤〉]𝑅 = 𝐵 → ((𝐴 ∈ 𝑆 → 𝜓) ↔ (𝐴 ∈ 𝑆 → 𝜒))) |
| 4 | 3ecoptocl.4 | . . . . 5 ⊢ ([〈𝑣, 𝑢〉]𝑅 = 𝐶 → (𝜒 ↔ 𝜃)) | |
| 5 | 4 | imbi2d 230 | . . . 4 ⊢ ([〈𝑣, 𝑢〉]𝑅 = 𝐶 → ((𝐴 ∈ 𝑆 → 𝜒) ↔ (𝐴 ∈ 𝑆 → 𝜃))) |
| 6 | 3ecoptocl.2 | . . . . . . 7 ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | 6 | imbi2d 230 | . . . . . 6 ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → ((((𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜑) ↔ (((𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜓))) |
| 8 | 3ecoptocl.5 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜑) | |
| 9 | 8 | 3expib 1208 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (((𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜑)) |
| 10 | 1, 7, 9 | ecoptocl 6699 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → (((𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜓)) |
| 11 | 10 | com12 30 | . . . 4 ⊢ (((𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → (𝐴 ∈ 𝑆 → 𝜓)) |
| 12 | 1, 3, 5, 11 | 2ecoptocl 6700 | . . 3 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴 ∈ 𝑆 → 𝜃)) |
| 13 | 12 | com12 30 | . 2 ⊢ (𝐴 ∈ 𝑆 → ((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 𝜃)) |
| 14 | 13 | 3impib 1203 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 〈cop 3635 × cxp 4671 [cec 6608 / cqs 6609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-xp 4679 df-cnv 4681 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-ec 6612 df-qs 6616 |
| This theorem is referenced by: ecovass 6721 ecoviass 6722 ecovdi 6723 ecovidi 6724 ltsonq 7493 ltanqg 7495 ltmnqg 7496 lttrsr 7857 ltsosr 7859 ltasrg 7865 mulextsr1 7876 |
| Copyright terms: Public domain | W3C validator |