Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3ecoptocl | GIF version |
Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 9-Aug-1995.) |
Ref | Expression |
---|---|
3ecoptocl.1 | ⊢ 𝑆 = ((𝐷 × 𝐷) / 𝑅) |
3ecoptocl.2 | ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) |
3ecoptocl.3 | ⊢ ([〈𝑧, 𝑤〉]𝑅 = 𝐵 → (𝜓 ↔ 𝜒)) |
3ecoptocl.4 | ⊢ ([〈𝑣, 𝑢〉]𝑅 = 𝐶 → (𝜒 ↔ 𝜃)) |
3ecoptocl.5 | ⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜑) |
Ref | Expression |
---|---|
3ecoptocl | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ecoptocl.1 | . . . 4 ⊢ 𝑆 = ((𝐷 × 𝐷) / 𝑅) | |
2 | 3ecoptocl.3 | . . . . 5 ⊢ ([〈𝑧, 𝑤〉]𝑅 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | 2 | imbi2d 229 | . . . 4 ⊢ ([〈𝑧, 𝑤〉]𝑅 = 𝐵 → ((𝐴 ∈ 𝑆 → 𝜓) ↔ (𝐴 ∈ 𝑆 → 𝜒))) |
4 | 3ecoptocl.4 | . . . . 5 ⊢ ([〈𝑣, 𝑢〉]𝑅 = 𝐶 → (𝜒 ↔ 𝜃)) | |
5 | 4 | imbi2d 229 | . . . 4 ⊢ ([〈𝑣, 𝑢〉]𝑅 = 𝐶 → ((𝐴 ∈ 𝑆 → 𝜒) ↔ (𝐴 ∈ 𝑆 → 𝜃))) |
6 | 3ecoptocl.2 | . . . . . . 7 ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) | |
7 | 6 | imbi2d 229 | . . . . . 6 ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → ((((𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜑) ↔ (((𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜓))) |
8 | 3ecoptocl.5 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜑) | |
9 | 8 | 3expib 1201 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (((𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜑)) |
10 | 1, 7, 9 | ecoptocl 6600 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → (((𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → 𝜓)) |
11 | 10 | com12 30 | . . . 4 ⊢ (((𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷) ∧ (𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷)) → (𝐴 ∈ 𝑆 → 𝜓)) |
12 | 1, 3, 5, 11 | 2ecoptocl 6601 | . . 3 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴 ∈ 𝑆 → 𝜃)) |
13 | 12 | com12 30 | . 2 ⊢ (𝐴 ∈ 𝑆 → ((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 𝜃)) |
14 | 13 | 3impib 1196 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 〈cop 3586 × cxp 4609 [cec 6511 / cqs 6512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-ec 6515 df-qs 6519 |
This theorem is referenced by: ecovass 6622 ecoviass 6623 ecovdi 6624 ecovidi 6625 ltsonq 7360 ltanqg 7362 ltmnqg 7363 lttrsr 7724 ltsosr 7726 ltasrg 7732 mulextsr1 7743 |
Copyright terms: Public domain | W3C validator |