| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lttrsr | Unicode version | ||
| Description: Signed real 'less than' is a transitive relation. (Contributed by Jim Kingdon, 4-Jan-2019.) |
| Ref | Expression |
|---|---|
| lttrsr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 7875 |
. 2
| |
| 2 | breq1 4062 |
. . . 4
| |
| 3 | 2 | anbi1d 465 |
. . 3
|
| 4 | breq1 4062 |
. . 3
| |
| 5 | 3, 4 | imbi12d 234 |
. 2
|
| 6 | breq2 4063 |
. . . 4
| |
| 7 | breq1 4062 |
. . . 4
| |
| 8 | 6, 7 | anbi12d 473 |
. . 3
|
| 9 | 8 | imbi1d 231 |
. 2
|
| 10 | breq2 4063 |
. . . 4
| |
| 11 | 10 | anbi2d 464 |
. . 3
|
| 12 | breq2 4063 |
. . 3
| |
| 13 | 11, 12 | imbi12d 234 |
. 2
|
| 14 | ltsrprg 7895 |
. . . . . 6
| |
| 15 | 14 | 3adant3 1020 |
. . . . 5
|
| 16 | ltaprg 7767 |
. . . . . . . 8
| |
| 17 | 16 | adantl 277 |
. . . . . . 7
|
| 18 | simp1l 1024 |
. . . . . . . 8
| |
| 19 | simp2r 1027 |
. . . . . . . 8
| |
| 20 | addclpr 7685 |
. . . . . . . 8
| |
| 21 | 18, 19, 20 | syl2anc 411 |
. . . . . . 7
|
| 22 | simp1r 1025 |
. . . . . . . 8
| |
| 23 | simp2l 1026 |
. . . . . . . 8
| |
| 24 | addclpr 7685 |
. . . . . . . 8
| |
| 25 | 22, 23, 24 | syl2anc 411 |
. . . . . . 7
|
| 26 | simp3r 1029 |
. . . . . . 7
| |
| 27 | addcomprg 7726 |
. . . . . . . 8
| |
| 28 | 27 | adantl 277 |
. . . . . . 7
|
| 29 | 17, 21, 25, 26, 28 | caovord2d 6139 |
. . . . . 6
|
| 30 | addassprg 7727 |
. . . . . . . 8
| |
| 31 | 18, 19, 26, 30 | syl3anc 1250 |
. . . . . . 7
|
| 32 | addassprg 7727 |
. . . . . . . 8
| |
| 33 | 22, 23, 26, 32 | syl3anc 1250 |
. . . . . . 7
|
| 34 | 31, 33 | breq12d 4072 |
. . . . . 6
|
| 35 | 29, 34 | bitrd 188 |
. . . . 5
|
| 36 | 15, 35 | bitrd 188 |
. . . 4
|
| 37 | ltsrprg 7895 |
. . . . . 6
| |
| 38 | 37 | 3adant1 1018 |
. . . . 5
|
| 39 | addclpr 7685 |
. . . . . . 7
| |
| 40 | 23, 26, 39 | syl2anc 411 |
. . . . . 6
|
| 41 | simp3l 1028 |
. . . . . . 7
| |
| 42 | addclpr 7685 |
. . . . . . 7
| |
| 43 | 19, 41, 42 | syl2anc 411 |
. . . . . 6
|
| 44 | ltaprg 7767 |
. . . . . 6
| |
| 45 | 40, 43, 22, 44 | syl3anc 1250 |
. . . . 5
|
| 46 | 38, 45 | bitrd 188 |
. . . 4
|
| 47 | 36, 46 | anbi12d 473 |
. . 3
|
| 48 | ltsopr 7744 |
. . . . 5
| |
| 49 | ltrelpr 7653 |
. . . . 5
| |
| 50 | 48, 49 | sotri 5097 |
. . . 4
|
| 51 | addclpr 7685 |
. . . . . . . 8
| |
| 52 | 18, 26, 51 | syl2anc 411 |
. . . . . . 7
|
| 53 | addclpr 7685 |
. . . . . . . 8
| |
| 54 | 22, 41, 53 | syl2anc 411 |
. . . . . . 7
|
| 55 | ltaprg 7767 |
. . . . . . 7
| |
| 56 | 52, 54, 19, 55 | syl3anc 1250 |
. . . . . 6
|
| 57 | 56 | biimprd 158 |
. . . . 5
|
| 58 | addassprg 7727 |
. . . . . . . 8
| |
| 59 | 58 | adantl 277 |
. . . . . . 7
|
| 60 | 18, 19, 26, 28, 59 | caov12d 6151 |
. . . . . 6
|
| 61 | 22, 19, 41, 28, 59 | caov12d 6151 |
. . . . . 6
|
| 62 | 60, 61 | breq12d 4072 |
. . . . 5
|
| 63 | ltsrprg 7895 |
. . . . . 6
| |
| 64 | 63 | 3adant2 1019 |
. . . . 5
|
| 65 | 57, 62, 64 | 3imtr4d 203 |
. . . 4
|
| 66 | 50, 65 | syl5 32 |
. . 3
|
| 67 | 47, 66 | sylbid 150 |
. 2
|
| 68 | 1, 5, 9, 13, 67 | 3ecoptocl 6734 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-eprel 4354 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-1o 6525 df-2o 6526 df-oadd 6529 df-omul 6530 df-er 6643 df-ec 6645 df-qs 6649 df-ni 7452 df-pli 7453 df-mi 7454 df-lti 7455 df-plpq 7492 df-mpq 7493 df-enq 7495 df-nqqs 7496 df-plqqs 7497 df-mqqs 7498 df-1nqqs 7499 df-rq 7500 df-ltnqqs 7501 df-enq0 7572 df-nq0 7573 df-0nq0 7574 df-plq0 7575 df-mq0 7576 df-inp 7614 df-iplp 7616 df-iltp 7618 df-enr 7874 df-nr 7875 df-ltr 7878 |
| This theorem is referenced by: ltposr 7911 |
| Copyright terms: Public domain | W3C validator |