| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lttrsr | Unicode version | ||
| Description: Signed real 'less than' is a transitive relation. (Contributed by Jim Kingdon, 4-Jan-2019.) |
| Ref | Expression |
|---|---|
| lttrsr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 7839 |
. 2
| |
| 2 | breq1 4046 |
. . . 4
| |
| 3 | 2 | anbi1d 465 |
. . 3
|
| 4 | breq1 4046 |
. . 3
| |
| 5 | 3, 4 | imbi12d 234 |
. 2
|
| 6 | breq2 4047 |
. . . 4
| |
| 7 | breq1 4046 |
. . . 4
| |
| 8 | 6, 7 | anbi12d 473 |
. . 3
|
| 9 | 8 | imbi1d 231 |
. 2
|
| 10 | breq2 4047 |
. . . 4
| |
| 11 | 10 | anbi2d 464 |
. . 3
|
| 12 | breq2 4047 |
. . 3
| |
| 13 | 11, 12 | imbi12d 234 |
. 2
|
| 14 | ltsrprg 7859 |
. . . . . 6
| |
| 15 | 14 | 3adant3 1019 |
. . . . 5
|
| 16 | ltaprg 7731 |
. . . . . . . 8
| |
| 17 | 16 | adantl 277 |
. . . . . . 7
|
| 18 | simp1l 1023 |
. . . . . . . 8
| |
| 19 | simp2r 1026 |
. . . . . . . 8
| |
| 20 | addclpr 7649 |
. . . . . . . 8
| |
| 21 | 18, 19, 20 | syl2anc 411 |
. . . . . . 7
|
| 22 | simp1r 1024 |
. . . . . . . 8
| |
| 23 | simp2l 1025 |
. . . . . . . 8
| |
| 24 | addclpr 7649 |
. . . . . . . 8
| |
| 25 | 22, 23, 24 | syl2anc 411 |
. . . . . . 7
|
| 26 | simp3r 1028 |
. . . . . . 7
| |
| 27 | addcomprg 7690 |
. . . . . . . 8
| |
| 28 | 27 | adantl 277 |
. . . . . . 7
|
| 29 | 17, 21, 25, 26, 28 | caovord2d 6115 |
. . . . . 6
|
| 30 | addassprg 7691 |
. . . . . . . 8
| |
| 31 | 18, 19, 26, 30 | syl3anc 1249 |
. . . . . . 7
|
| 32 | addassprg 7691 |
. . . . . . . 8
| |
| 33 | 22, 23, 26, 32 | syl3anc 1249 |
. . . . . . 7
|
| 34 | 31, 33 | breq12d 4056 |
. . . . . 6
|
| 35 | 29, 34 | bitrd 188 |
. . . . 5
|
| 36 | 15, 35 | bitrd 188 |
. . . 4
|
| 37 | ltsrprg 7859 |
. . . . . 6
| |
| 38 | 37 | 3adant1 1017 |
. . . . 5
|
| 39 | addclpr 7649 |
. . . . . . 7
| |
| 40 | 23, 26, 39 | syl2anc 411 |
. . . . . 6
|
| 41 | simp3l 1027 |
. . . . . . 7
| |
| 42 | addclpr 7649 |
. . . . . . 7
| |
| 43 | 19, 41, 42 | syl2anc 411 |
. . . . . 6
|
| 44 | ltaprg 7731 |
. . . . . 6
| |
| 45 | 40, 43, 22, 44 | syl3anc 1249 |
. . . . 5
|
| 46 | 38, 45 | bitrd 188 |
. . . 4
|
| 47 | 36, 46 | anbi12d 473 |
. . 3
|
| 48 | ltsopr 7708 |
. . . . 5
| |
| 49 | ltrelpr 7617 |
. . . . 5
| |
| 50 | 48, 49 | sotri 5077 |
. . . 4
|
| 51 | addclpr 7649 |
. . . . . . . 8
| |
| 52 | 18, 26, 51 | syl2anc 411 |
. . . . . . 7
|
| 53 | addclpr 7649 |
. . . . . . . 8
| |
| 54 | 22, 41, 53 | syl2anc 411 |
. . . . . . 7
|
| 55 | ltaprg 7731 |
. . . . . . 7
| |
| 56 | 52, 54, 19, 55 | syl3anc 1249 |
. . . . . 6
|
| 57 | 56 | biimprd 158 |
. . . . 5
|
| 58 | addassprg 7691 |
. . . . . . . 8
| |
| 59 | 58 | adantl 277 |
. . . . . . 7
|
| 60 | 18, 19, 26, 28, 59 | caov12d 6127 |
. . . . . 6
|
| 61 | 22, 19, 41, 28, 59 | caov12d 6127 |
. . . . . 6
|
| 62 | 60, 61 | breq12d 4056 |
. . . . 5
|
| 63 | ltsrprg 7859 |
. . . . . 6
| |
| 64 | 63 | 3adant2 1018 |
. . . . 5
|
| 65 | 57, 62, 64 | 3imtr4d 203 |
. . . 4
|
| 66 | 50, 65 | syl5 32 |
. . 3
|
| 67 | 47, 66 | sylbid 150 |
. 2
|
| 68 | 1, 5, 9, 13, 67 | 3ecoptocl 6710 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-eprel 4335 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-1o 6501 df-2o 6502 df-oadd 6505 df-omul 6506 df-er 6619 df-ec 6621 df-qs 6625 df-ni 7416 df-pli 7417 df-mi 7418 df-lti 7419 df-plpq 7456 df-mpq 7457 df-enq 7459 df-nqqs 7460 df-plqqs 7461 df-mqqs 7462 df-1nqqs 7463 df-rq 7464 df-ltnqqs 7465 df-enq0 7536 df-nq0 7537 df-0nq0 7538 df-plq0 7539 df-mq0 7540 df-inp 7578 df-iplp 7580 df-iltp 7582 df-enr 7838 df-nr 7839 df-ltr 7842 |
| This theorem is referenced by: ltposr 7875 |
| Copyright terms: Public domain | W3C validator |