ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttrsr Unicode version

Theorem lttrsr 7594
Description: Signed real 'less than' is a transitive relation. (Contributed by Jim Kingdon, 4-Jan-2019.)
Assertion
Ref Expression
lttrsr  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
( f  <R  g  /\  g  <R  h )  ->  f  <R  h
) )
Distinct variable group:    f, g, h

Proof of Theorem lttrsr
Dummy variables  r  s  t  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7559 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 breq1 3940 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  f  <R  [
<. z ,  w >. ]  ~R  ) )
32anbi1d 461 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  /\  [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  <->  ( f  <R  [ <. z ,  w >. ]  ~R  /\  [
<. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )
) )
4 breq1 3940 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( [ <. x ,  y >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  <->  f  <R  [
<. v ,  u >. ]  ~R  ) )
53, 4imbi12d 233 . 2  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( ( ( [
<. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  /\  [
<. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  ->  [ <. x ,  y
>. ]  ~R  <R  [ <. v ,  u >. ]  ~R  ) 
<->  ( ( f  <R  [ <. z ,  w >. ]  ~R  /\  [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  ->  f  <R  [ <. v ,  u >. ]  ~R  )
) )
6 breq2 3941 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  g  -> 
( f  <R  [ <. z ,  w >. ]  ~R  <->  f 
<R  g ) )
7 breq1 3940 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  g  -> 
( [ <. z ,  w >. ]  ~R  <R  [
<. v ,  u >. ]  ~R  <->  g  <R  [ <. v ,  u >. ]  ~R  ) )
86, 7anbi12d 465 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  g  -> 
( ( f  <R  [ <. z ,  w >. ]  ~R  /\  [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  <->  ( f  <R  g  /\  g  <R  [ <. v ,  u >. ]  ~R  )
) )
98imbi1d 230 . 2  |-  ( [
<. z ,  w >. ]  ~R  =  g  -> 
( ( ( f 
<R  [ <. z ,  w >. ]  ~R  /\  [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  ->  f  <R  [ <. v ,  u >. ]  ~R  )  <->  ( ( f  <R  g  /\  g  <R  [ <. v ,  u >. ]  ~R  )  ->  f  <R  [ <. v ,  u >. ]  ~R  ) ) )
10 breq2 3941 . . . 4  |-  ( [
<. v ,  u >. ]  ~R  =  h  -> 
( g  <R  [ <. v ,  u >. ]  ~R  <->  g 
<R  h ) )
1110anbi2d 460 . . 3  |-  ( [
<. v ,  u >. ]  ~R  =  h  -> 
( ( f  <R 
g  /\  g  <R  [
<. v ,  u >. ]  ~R  )  <->  ( f  <R  g  /\  g  <R  h ) ) )
12 breq2 3941 . . 3  |-  ( [
<. v ,  u >. ]  ~R  =  h  -> 
( f  <R  [ <. v ,  u >. ]  ~R  <->  f 
<R  h ) )
1311, 12imbi12d 233 . 2  |-  ( [
<. v ,  u >. ]  ~R  =  h  -> 
( ( ( f 
<R  g  /\  g  <R  [ <. v ,  u >. ]  ~R  )  -> 
f  <R  [ <. v ,  u >. ]  ~R  )  <->  ( ( f  <R  g  /\  g  <R  h )  ->  f  <R  h
) ) )
14 ltsrprg 7579 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  w )  <P  (
y  +P.  z )
) )
15143adant3 1002 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  w )  <P  (
y  +P.  z )
) )
16 ltaprg 7451 . . . . . . . 8  |-  ( ( r  e.  P.  /\  s  e.  P.  /\  t  e.  P. )  ->  (
r  <P  s  <->  ( t  +P.  r )  <P  (
t  +P.  s )
) )
1716adantl 275 . . . . . . 7  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  /\  ( r  e.  P.  /\  s  e. 
P.  /\  t  e.  P. ) )  ->  (
r  <P  s  <->  ( t  +P.  r )  <P  (
t  +P.  s )
) )
18 simp1l 1006 . . . . . . . 8  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  x  e.  P. )
19 simp2r 1009 . . . . . . . 8  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  w  e.  P. )
20 addclpr 7369 . . . . . . . 8  |-  ( ( x  e.  P.  /\  w  e.  P. )  ->  ( x  +P.  w
)  e.  P. )
2118, 19, 20syl2anc 409 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( x  +P.  w )  e.  P. )
22 simp1r 1007 . . . . . . . 8  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  y  e.  P. )
23 simp2l 1008 . . . . . . . 8  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  z  e.  P. )
24 addclpr 7369 . . . . . . . 8  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  +P.  z
)  e.  P. )
2522, 23, 24syl2anc 409 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( y  +P.  z )  e.  P. )
26 simp3r 1011 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  u  e.  P. )
27 addcomprg 7410 . . . . . . . 8  |-  ( ( r  e.  P.  /\  s  e.  P. )  ->  ( r  +P.  s
)  =  ( s  +P.  r ) )
2827adantl 275 . . . . . . 7  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  /\  ( r  e.  P.  /\  s  e. 
P. ) )  -> 
( r  +P.  s
)  =  ( s  +P.  r ) )
2917, 21, 25, 26, 28caovord2d 5948 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  +P.  w )  <P  ( y  +P.  z
)  <->  ( ( x  +P.  w )  +P.  u )  <P  (
( y  +P.  z
)  +P.  u )
) )
30 addassprg 7411 . . . . . . . 8  |-  ( ( x  e.  P.  /\  w  e.  P.  /\  u  e.  P. )  ->  (
( x  +P.  w
)  +P.  u )  =  ( x  +P.  ( w  +P.  u ) ) )
3118, 19, 26, 30syl3anc 1217 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  +P.  w )  +P.  u )  =  ( x  +P.  ( w  +P.  u ) ) )
32 addassprg 7411 . . . . . . . 8  |-  ( ( y  e.  P.  /\  z  e.  P.  /\  u  e.  P. )  ->  (
( y  +P.  z
)  +P.  u )  =  ( y  +P.  ( z  +P.  u
) ) )
3322, 23, 26, 32syl3anc 1217 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
y  +P.  z )  +P.  u )  =  ( y  +P.  ( z  +P.  u ) ) )
3431, 33breq12d 3950 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
( x  +P.  w
)  +P.  u )  <P  ( ( y  +P.  z )  +P.  u
)  <->  ( x  +P.  ( w  +P.  u ) )  <P  ( y  +P.  ( z  +P.  u
) ) ) )
3529, 34bitrd 187 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  +P.  w )  <P  ( y  +P.  z
)  <->  ( x  +P.  ( w  +P.  u ) )  <P  ( y  +P.  ( z  +P.  u
) ) ) )
3615, 35bitrd 187 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  ( w  +P.  u
) )  <P  (
y  +P.  ( z  +P.  u ) ) ) )
37 ltsrprg 7579 . . . . . 6  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  <->  ( z  +P.  u )  <P  (
w  +P.  v )
) )
38373adant1 1000 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  <->  ( z  +P.  u )  <P  (
w  +P.  v )
) )
39 addclpr 7369 . . . . . . 7  |-  ( ( z  e.  P.  /\  u  e.  P. )  ->  ( z  +P.  u
)  e.  P. )
4023, 26, 39syl2anc 409 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( z  +P.  u )  e.  P. )
41 simp3l 1010 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  v  e.  P. )
42 addclpr 7369 . . . . . . 7  |-  ( ( w  e.  P.  /\  v  e.  P. )  ->  ( w  +P.  v
)  e.  P. )
4319, 41, 42syl2anc 409 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( w  +P.  v )  e.  P. )
44 ltaprg 7451 . . . . . 6  |-  ( ( ( z  +P.  u
)  e.  P.  /\  ( w  +P.  v )  e.  P.  /\  y  e.  P. )  ->  (
( z  +P.  u
)  <P  ( w  +P.  v )  <->  ( y  +P.  ( z  +P.  u
) )  <P  (
y  +P.  ( w  +P.  v ) ) ) )
4540, 43, 22, 44syl3anc 1217 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
z  +P.  u )  <P  ( w  +P.  v
)  <->  ( y  +P.  ( z  +P.  u
) )  <P  (
y  +P.  ( w  +P.  v ) ) ) )
4638, 45bitrd 187 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  <->  ( y  +P.  ( z  +P.  u
) )  <P  (
y  +P.  ( w  +P.  v ) ) ) )
4736, 46anbi12d 465 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  /\ 
[ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  ) 
<->  ( ( x  +P.  ( w  +P.  u ) )  <P  ( y  +P.  ( z  +P.  u
) )  /\  (
y  +P.  ( z  +P.  u ) )  <P 
( y  +P.  (
w  +P.  v )
) ) ) )
48 ltsopr 7428 . . . . 5  |-  <P  Or  P.
49 ltrelpr 7337 . . . . 5  |-  <P  C_  ( P.  X.  P. )
5048, 49sotri 4942 . . . 4  |-  ( ( ( x  +P.  (
w  +P.  u )
)  <P  ( y  +P.  ( z  +P.  u
) )  /\  (
y  +P.  ( z  +P.  u ) )  <P 
( y  +P.  (
w  +P.  v )
) )  ->  (
x  +P.  ( w  +P.  u ) )  <P 
( y  +P.  (
w  +P.  v )
) )
51 addclpr 7369 . . . . . . . 8  |-  ( ( x  e.  P.  /\  u  e.  P. )  ->  ( x  +P.  u
)  e.  P. )
5218, 26, 51syl2anc 409 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( x  +P.  u )  e.  P. )
53 addclpr 7369 . . . . . . . 8  |-  ( ( y  e.  P.  /\  v  e.  P. )  ->  ( y  +P.  v
)  e.  P. )
5422, 41, 53syl2anc 409 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( y  +P.  v )  e.  P. )
55 ltaprg 7451 . . . . . . 7  |-  ( ( ( x  +P.  u
)  e.  P.  /\  ( y  +P.  v
)  e.  P.  /\  w  e.  P. )  ->  ( ( x  +P.  u )  <P  (
y  +P.  v )  <->  ( w  +P.  ( x  +P.  u ) ) 
<P  ( w  +P.  (
y  +P.  v )
) ) )
5652, 54, 19, 55syl3anc 1217 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  +P.  u )  <P  ( y  +P.  v
)  <->  ( w  +P.  ( x  +P.  u ) )  <P  ( w  +P.  ( y  +P.  v
) ) ) )
5756biimprd 157 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
w  +P.  ( x  +P.  u ) )  <P 
( w  +P.  (
y  +P.  v )
)  ->  ( x  +P.  u )  <P  (
y  +P.  v )
) )
58 addassprg 7411 . . . . . . . 8  |-  ( ( r  e.  P.  /\  s  e.  P.  /\  t  e.  P. )  ->  (
( r  +P.  s
)  +P.  t )  =  ( r  +P.  ( s  +P.  t
) ) )
5958adantl 275 . . . . . . 7  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  /\  ( r  e.  P.  /\  s  e. 
P.  /\  t  e.  P. ) )  ->  (
( r  +P.  s
)  +P.  t )  =  ( r  +P.  ( s  +P.  t
) ) )
6018, 19, 26, 28, 59caov12d 5960 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( x  +P.  ( w  +P.  u
) )  =  ( w  +P.  ( x  +P.  u ) ) )
6122, 19, 41, 28, 59caov12d 5960 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( y  +P.  ( w  +P.  v
) )  =  ( w  +P.  ( y  +P.  v ) ) )
6260, 61breq12d 3950 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  +P.  ( w  +P.  u ) )  <P 
( y  +P.  (
w  +P.  v )
)  <->  ( w  +P.  ( x  +P.  u ) )  <P  ( w  +P.  ( y  +P.  v
) ) ) )
63 ltsrprg 7579 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  <->  ( x  +P.  u )  <P  (
y  +P.  v )
) )
64633adant2 1001 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  <->  ( x  +P.  u )  <P  (
y  +P.  v )
) )
6557, 62, 643imtr4d 202 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  +P.  ( w  +P.  u ) )  <P 
( y  +P.  (
w  +P.  v )
)  ->  [ <. x ,  y >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  ) )
6650, 65syl5 32 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
( x  +P.  (
w  +P.  u )
)  <P  ( y  +P.  ( z  +P.  u
) )  /\  (
y  +P.  ( z  +P.  u ) )  <P 
( y  +P.  (
w  +P.  v )
) )  ->  [ <. x ,  y >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  ) )
6747, 66sylbid 149 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  /\ 
[ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  ->  [ <. x ,  y >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  ) )
681, 5, 9, 13, 673ecoptocl 6526 1  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
( f  <R  g  /\  g  <R  h )  ->  f  <R  h
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   <.cop 3535   class class class wbr 3937  (class class class)co 5782   [cec 6435   P.cnp 7123    +P. cpp 7125    <P cltp 7127    ~R cer 7128   R.cnr 7129    <R cltr 7135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-iplp 7300  df-iltp 7302  df-enr 7558  df-nr 7559  df-ltr 7562
This theorem is referenced by:  ltposr  7595
  Copyright terms: Public domain W3C validator