ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttrsr Unicode version

Theorem lttrsr 7570
Description: Signed real 'less than' is a transitive relation. (Contributed by Jim Kingdon, 4-Jan-2019.)
Assertion
Ref Expression
lttrsr  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
( f  <R  g  /\  g  <R  h )  ->  f  <R  h
) )
Distinct variable group:    f, g, h

Proof of Theorem lttrsr
Dummy variables  r  s  t  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7535 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 breq1 3932 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  f  <R  [
<. z ,  w >. ]  ~R  ) )
32anbi1d 460 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  /\  [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  <->  ( f  <R  [ <. z ,  w >. ]  ~R  /\  [
<. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )
) )
4 breq1 3932 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( [ <. x ,  y >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  <->  f  <R  [
<. v ,  u >. ]  ~R  ) )
53, 4imbi12d 233 . 2  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( ( ( [
<. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  /\  [
<. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  ->  [ <. x ,  y
>. ]  ~R  <R  [ <. v ,  u >. ]  ~R  ) 
<->  ( ( f  <R  [ <. z ,  w >. ]  ~R  /\  [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  ->  f  <R  [ <. v ,  u >. ]  ~R  )
) )
6 breq2 3933 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  g  -> 
( f  <R  [ <. z ,  w >. ]  ~R  <->  f 
<R  g ) )
7 breq1 3932 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  g  -> 
( [ <. z ,  w >. ]  ~R  <R  [
<. v ,  u >. ]  ~R  <->  g  <R  [ <. v ,  u >. ]  ~R  ) )
86, 7anbi12d 464 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  g  -> 
( ( f  <R  [ <. z ,  w >. ]  ~R  /\  [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  <->  ( f  <R  g  /\  g  <R  [ <. v ,  u >. ]  ~R  )
) )
98imbi1d 230 . 2  |-  ( [
<. z ,  w >. ]  ~R  =  g  -> 
( ( ( f 
<R  [ <. z ,  w >. ]  ~R  /\  [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  ->  f  <R  [ <. v ,  u >. ]  ~R  )  <->  ( ( f  <R  g  /\  g  <R  [ <. v ,  u >. ]  ~R  )  ->  f  <R  [ <. v ,  u >. ]  ~R  ) ) )
10 breq2 3933 . . . 4  |-  ( [
<. v ,  u >. ]  ~R  =  h  -> 
( g  <R  [ <. v ,  u >. ]  ~R  <->  g 
<R  h ) )
1110anbi2d 459 . . 3  |-  ( [
<. v ,  u >. ]  ~R  =  h  -> 
( ( f  <R 
g  /\  g  <R  [
<. v ,  u >. ]  ~R  )  <->  ( f  <R  g  /\  g  <R  h ) ) )
12 breq2 3933 . . 3  |-  ( [
<. v ,  u >. ]  ~R  =  h  -> 
( f  <R  [ <. v ,  u >. ]  ~R  <->  f 
<R  h ) )
1311, 12imbi12d 233 . 2  |-  ( [
<. v ,  u >. ]  ~R  =  h  -> 
( ( ( f 
<R  g  /\  g  <R  [ <. v ,  u >. ]  ~R  )  -> 
f  <R  [ <. v ,  u >. ]  ~R  )  <->  ( ( f  <R  g  /\  g  <R  h )  ->  f  <R  h
) ) )
14 ltsrprg 7555 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  w )  <P  (
y  +P.  z )
) )
15143adant3 1001 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  w )  <P  (
y  +P.  z )
) )
16 ltaprg 7427 . . . . . . . 8  |-  ( ( r  e.  P.  /\  s  e.  P.  /\  t  e.  P. )  ->  (
r  <P  s  <->  ( t  +P.  r )  <P  (
t  +P.  s )
) )
1716adantl 275 . . . . . . 7  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  /\  ( r  e.  P.  /\  s  e. 
P.  /\  t  e.  P. ) )  ->  (
r  <P  s  <->  ( t  +P.  r )  <P  (
t  +P.  s )
) )
18 simp1l 1005 . . . . . . . 8  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  x  e.  P. )
19 simp2r 1008 . . . . . . . 8  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  w  e.  P. )
20 addclpr 7345 . . . . . . . 8  |-  ( ( x  e.  P.  /\  w  e.  P. )  ->  ( x  +P.  w
)  e.  P. )
2118, 19, 20syl2anc 408 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( x  +P.  w )  e.  P. )
22 simp1r 1006 . . . . . . . 8  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  y  e.  P. )
23 simp2l 1007 . . . . . . . 8  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  z  e.  P. )
24 addclpr 7345 . . . . . . . 8  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  +P.  z
)  e.  P. )
2522, 23, 24syl2anc 408 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( y  +P.  z )  e.  P. )
26 simp3r 1010 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  u  e.  P. )
27 addcomprg 7386 . . . . . . . 8  |-  ( ( r  e.  P.  /\  s  e.  P. )  ->  ( r  +P.  s
)  =  ( s  +P.  r ) )
2827adantl 275 . . . . . . 7  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  /\  ( r  e.  P.  /\  s  e. 
P. ) )  -> 
( r  +P.  s
)  =  ( s  +P.  r ) )
2917, 21, 25, 26, 28caovord2d 5940 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  +P.  w )  <P  ( y  +P.  z
)  <->  ( ( x  +P.  w )  +P.  u )  <P  (
( y  +P.  z
)  +P.  u )
) )
30 addassprg 7387 . . . . . . . 8  |-  ( ( x  e.  P.  /\  w  e.  P.  /\  u  e.  P. )  ->  (
( x  +P.  w
)  +P.  u )  =  ( x  +P.  ( w  +P.  u ) ) )
3118, 19, 26, 30syl3anc 1216 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  +P.  w )  +P.  u )  =  ( x  +P.  ( w  +P.  u ) ) )
32 addassprg 7387 . . . . . . . 8  |-  ( ( y  e.  P.  /\  z  e.  P.  /\  u  e.  P. )  ->  (
( y  +P.  z
)  +P.  u )  =  ( y  +P.  ( z  +P.  u
) ) )
3322, 23, 26, 32syl3anc 1216 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
y  +P.  z )  +P.  u )  =  ( y  +P.  ( z  +P.  u ) ) )
3431, 33breq12d 3942 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
( x  +P.  w
)  +P.  u )  <P  ( ( y  +P.  z )  +P.  u
)  <->  ( x  +P.  ( w  +P.  u ) )  <P  ( y  +P.  ( z  +P.  u
) ) ) )
3529, 34bitrd 187 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  +P.  w )  <P  ( y  +P.  z
)  <->  ( x  +P.  ( w  +P.  u ) )  <P  ( y  +P.  ( z  +P.  u
) ) ) )
3615, 35bitrd 187 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  ( w  +P.  u
) )  <P  (
y  +P.  ( z  +P.  u ) ) ) )
37 ltsrprg 7555 . . . . . 6  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  <->  ( z  +P.  u )  <P  (
w  +P.  v )
) )
38373adant1 999 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  <->  ( z  +P.  u )  <P  (
w  +P.  v )
) )
39 addclpr 7345 . . . . . . 7  |-  ( ( z  e.  P.  /\  u  e.  P. )  ->  ( z  +P.  u
)  e.  P. )
4023, 26, 39syl2anc 408 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( z  +P.  u )  e.  P. )
41 simp3l 1009 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  v  e.  P. )
42 addclpr 7345 . . . . . . 7  |-  ( ( w  e.  P.  /\  v  e.  P. )  ->  ( w  +P.  v
)  e.  P. )
4319, 41, 42syl2anc 408 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( w  +P.  v )  e.  P. )
44 ltaprg 7427 . . . . . 6  |-  ( ( ( z  +P.  u
)  e.  P.  /\  ( w  +P.  v )  e.  P.  /\  y  e.  P. )  ->  (
( z  +P.  u
)  <P  ( w  +P.  v )  <->  ( y  +P.  ( z  +P.  u
) )  <P  (
y  +P.  ( w  +P.  v ) ) ) )
4540, 43, 22, 44syl3anc 1216 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
z  +P.  u )  <P  ( w  +P.  v
)  <->  ( y  +P.  ( z  +P.  u
) )  <P  (
y  +P.  ( w  +P.  v ) ) ) )
4638, 45bitrd 187 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  <->  ( y  +P.  ( z  +P.  u
) )  <P  (
y  +P.  ( w  +P.  v ) ) ) )
4736, 46anbi12d 464 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  /\ 
[ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  ) 
<->  ( ( x  +P.  ( w  +P.  u ) )  <P  ( y  +P.  ( z  +P.  u
) )  /\  (
y  +P.  ( z  +P.  u ) )  <P 
( y  +P.  (
w  +P.  v )
) ) ) )
48 ltsopr 7404 . . . . 5  |-  <P  Or  P.
49 ltrelpr 7313 . . . . 5  |-  <P  C_  ( P.  X.  P. )
5048, 49sotri 4934 . . . 4  |-  ( ( ( x  +P.  (
w  +P.  u )
)  <P  ( y  +P.  ( z  +P.  u
) )  /\  (
y  +P.  ( z  +P.  u ) )  <P 
( y  +P.  (
w  +P.  v )
) )  ->  (
x  +P.  ( w  +P.  u ) )  <P 
( y  +P.  (
w  +P.  v )
) )
51 addclpr 7345 . . . . . . . 8  |-  ( ( x  e.  P.  /\  u  e.  P. )  ->  ( x  +P.  u
)  e.  P. )
5218, 26, 51syl2anc 408 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( x  +P.  u )  e.  P. )
53 addclpr 7345 . . . . . . . 8  |-  ( ( y  e.  P.  /\  v  e.  P. )  ->  ( y  +P.  v
)  e.  P. )
5422, 41, 53syl2anc 408 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( y  +P.  v )  e.  P. )
55 ltaprg 7427 . . . . . . 7  |-  ( ( ( x  +P.  u
)  e.  P.  /\  ( y  +P.  v
)  e.  P.  /\  w  e.  P. )  ->  ( ( x  +P.  u )  <P  (
y  +P.  v )  <->  ( w  +P.  ( x  +P.  u ) ) 
<P  ( w  +P.  (
y  +P.  v )
) ) )
5652, 54, 19, 55syl3anc 1216 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  +P.  u )  <P  ( y  +P.  v
)  <->  ( w  +P.  ( x  +P.  u ) )  <P  ( w  +P.  ( y  +P.  v
) ) ) )
5756biimprd 157 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
w  +P.  ( x  +P.  u ) )  <P 
( w  +P.  (
y  +P.  v )
)  ->  ( x  +P.  u )  <P  (
y  +P.  v )
) )
58 addassprg 7387 . . . . . . . 8  |-  ( ( r  e.  P.  /\  s  e.  P.  /\  t  e.  P. )  ->  (
( r  +P.  s
)  +P.  t )  =  ( r  +P.  ( s  +P.  t
) ) )
5958adantl 275 . . . . . . 7  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  /\  ( r  e.  P.  /\  s  e. 
P.  /\  t  e.  P. ) )  ->  (
( r  +P.  s
)  +P.  t )  =  ( r  +P.  ( s  +P.  t
) ) )
6018, 19, 26, 28, 59caov12d 5952 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( x  +P.  ( w  +P.  u
) )  =  ( w  +P.  ( x  +P.  u ) ) )
6122, 19, 41, 28, 59caov12d 5952 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( y  +P.  ( w  +P.  v
) )  =  ( w  +P.  ( y  +P.  v ) ) )
6260, 61breq12d 3942 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  +P.  ( w  +P.  u ) )  <P 
( y  +P.  (
w  +P.  v )
)  <->  ( w  +P.  ( x  +P.  u ) )  <P  ( w  +P.  ( y  +P.  v
) ) ) )
63 ltsrprg 7555 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  <->  ( x  +P.  u )  <P  (
y  +P.  v )
) )
64633adant2 1000 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  <->  ( x  +P.  u )  <P  (
y  +P.  v )
) )
6557, 62, 643imtr4d 202 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  +P.  ( w  +P.  u ) )  <P 
( y  +P.  (
w  +P.  v )
)  ->  [ <. x ,  y >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  ) )
6650, 65syl5 32 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
( x  +P.  (
w  +P.  u )
)  <P  ( y  +P.  ( z  +P.  u
) )  /\  (
y  +P.  ( z  +P.  u ) )  <P 
( y  +P.  (
w  +P.  v )
) )  ->  [ <. x ,  y >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  ) )
6747, 66sylbid 149 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  /\ 
[ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  ->  [ <. x ,  y >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  ) )
681, 5, 9, 13, 673ecoptocl 6518 1  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
( f  <R  g  /\  g  <R  h )  ->  f  <R  h
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   <.cop 3530   class class class wbr 3929  (class class class)co 5774   [cec 6427   P.cnp 7099    +P. cpp 7101    <P cltp 7103    ~R cer 7104   R.cnr 7105    <R cltr 7111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274  df-iplp 7276  df-iltp 7278  df-enr 7534  df-nr 7535  df-ltr 7538
This theorem is referenced by:  ltposr  7571
  Copyright terms: Public domain W3C validator