ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttrsr Unicode version

Theorem lttrsr 7874
Description: Signed real 'less than' is a transitive relation. (Contributed by Jim Kingdon, 4-Jan-2019.)
Assertion
Ref Expression
lttrsr  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
( f  <R  g  /\  g  <R  h )  ->  f  <R  h
) )
Distinct variable group:    f, g, h

Proof of Theorem lttrsr
Dummy variables  r  s  t  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7839 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 breq1 4046 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  f  <R  [
<. z ,  w >. ]  ~R  ) )
32anbi1d 465 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  /\  [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  <->  ( f  <R  [ <. z ,  w >. ]  ~R  /\  [
<. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )
) )
4 breq1 4046 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( [ <. x ,  y >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  <->  f  <R  [
<. v ,  u >. ]  ~R  ) )
53, 4imbi12d 234 . 2  |-  ( [
<. x ,  y >. ]  ~R  =  f  -> 
( ( ( [
<. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  /\  [
<. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  ->  [ <. x ,  y
>. ]  ~R  <R  [ <. v ,  u >. ]  ~R  ) 
<->  ( ( f  <R  [ <. z ,  w >. ]  ~R  /\  [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  ->  f  <R  [ <. v ,  u >. ]  ~R  )
) )
6 breq2 4047 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  g  -> 
( f  <R  [ <. z ,  w >. ]  ~R  <->  f 
<R  g ) )
7 breq1 4046 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  g  -> 
( [ <. z ,  w >. ]  ~R  <R  [
<. v ,  u >. ]  ~R  <->  g  <R  [ <. v ,  u >. ]  ~R  ) )
86, 7anbi12d 473 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  g  -> 
( ( f  <R  [ <. z ,  w >. ]  ~R  /\  [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  <->  ( f  <R  g  /\  g  <R  [ <. v ,  u >. ]  ~R  )
) )
98imbi1d 231 . 2  |-  ( [
<. z ,  w >. ]  ~R  =  g  -> 
( ( ( f 
<R  [ <. z ,  w >. ]  ~R  /\  [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  ->  f  <R  [ <. v ,  u >. ]  ~R  )  <->  ( ( f  <R  g  /\  g  <R  [ <. v ,  u >. ]  ~R  )  ->  f  <R  [ <. v ,  u >. ]  ~R  ) ) )
10 breq2 4047 . . . 4  |-  ( [
<. v ,  u >. ]  ~R  =  h  -> 
( g  <R  [ <. v ,  u >. ]  ~R  <->  g 
<R  h ) )
1110anbi2d 464 . . 3  |-  ( [
<. v ,  u >. ]  ~R  =  h  -> 
( ( f  <R 
g  /\  g  <R  [
<. v ,  u >. ]  ~R  )  <->  ( f  <R  g  /\  g  <R  h ) ) )
12 breq2 4047 . . 3  |-  ( [
<. v ,  u >. ]  ~R  =  h  -> 
( f  <R  [ <. v ,  u >. ]  ~R  <->  f 
<R  h ) )
1311, 12imbi12d 234 . 2  |-  ( [
<. v ,  u >. ]  ~R  =  h  -> 
( ( ( f 
<R  g  /\  g  <R  [ <. v ,  u >. ]  ~R  )  -> 
f  <R  [ <. v ,  u >. ]  ~R  )  <->  ( ( f  <R  g  /\  g  <R  h )  ->  f  <R  h
) ) )
14 ltsrprg 7859 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  w )  <P  (
y  +P.  z )
) )
15143adant3 1019 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  w )  <P  (
y  +P.  z )
) )
16 ltaprg 7731 . . . . . . . 8  |-  ( ( r  e.  P.  /\  s  e.  P.  /\  t  e.  P. )  ->  (
r  <P  s  <->  ( t  +P.  r )  <P  (
t  +P.  s )
) )
1716adantl 277 . . . . . . 7  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  /\  ( r  e.  P.  /\  s  e. 
P.  /\  t  e.  P. ) )  ->  (
r  <P  s  <->  ( t  +P.  r )  <P  (
t  +P.  s )
) )
18 simp1l 1023 . . . . . . . 8  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  x  e.  P. )
19 simp2r 1026 . . . . . . . 8  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  w  e.  P. )
20 addclpr 7649 . . . . . . . 8  |-  ( ( x  e.  P.  /\  w  e.  P. )  ->  ( x  +P.  w
)  e.  P. )
2118, 19, 20syl2anc 411 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( x  +P.  w )  e.  P. )
22 simp1r 1024 . . . . . . . 8  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  y  e.  P. )
23 simp2l 1025 . . . . . . . 8  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  z  e.  P. )
24 addclpr 7649 . . . . . . . 8  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  +P.  z
)  e.  P. )
2522, 23, 24syl2anc 411 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( y  +P.  z )  e.  P. )
26 simp3r 1028 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  u  e.  P. )
27 addcomprg 7690 . . . . . . . 8  |-  ( ( r  e.  P.  /\  s  e.  P. )  ->  ( r  +P.  s
)  =  ( s  +P.  r ) )
2827adantl 277 . . . . . . 7  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  /\  ( r  e.  P.  /\  s  e. 
P. ) )  -> 
( r  +P.  s
)  =  ( s  +P.  r ) )
2917, 21, 25, 26, 28caovord2d 6115 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  +P.  w )  <P  ( y  +P.  z
)  <->  ( ( x  +P.  w )  +P.  u )  <P  (
( y  +P.  z
)  +P.  u )
) )
30 addassprg 7691 . . . . . . . 8  |-  ( ( x  e.  P.  /\  w  e.  P.  /\  u  e.  P. )  ->  (
( x  +P.  w
)  +P.  u )  =  ( x  +P.  ( w  +P.  u ) ) )
3118, 19, 26, 30syl3anc 1249 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  +P.  w )  +P.  u )  =  ( x  +P.  ( w  +P.  u ) ) )
32 addassprg 7691 . . . . . . . 8  |-  ( ( y  e.  P.  /\  z  e.  P.  /\  u  e.  P. )  ->  (
( y  +P.  z
)  +P.  u )  =  ( y  +P.  ( z  +P.  u
) ) )
3322, 23, 26, 32syl3anc 1249 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
y  +P.  z )  +P.  u )  =  ( y  +P.  ( z  +P.  u ) ) )
3431, 33breq12d 4056 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
( x  +P.  w
)  +P.  u )  <P  ( ( y  +P.  z )  +P.  u
)  <->  ( x  +P.  ( w  +P.  u ) )  <P  ( y  +P.  ( z  +P.  u
) ) ) )
3529, 34bitrd 188 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  +P.  w )  <P  ( y  +P.  z
)  <->  ( x  +P.  ( w  +P.  u ) )  <P  ( y  +P.  ( z  +P.  u
) ) ) )
3615, 35bitrd 188 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  ( w  +P.  u
) )  <P  (
y  +P.  ( z  +P.  u ) ) ) )
37 ltsrprg 7859 . . . . . 6  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  <->  ( z  +P.  u )  <P  (
w  +P.  v )
) )
38373adant1 1017 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  <->  ( z  +P.  u )  <P  (
w  +P.  v )
) )
39 addclpr 7649 . . . . . . 7  |-  ( ( z  e.  P.  /\  u  e.  P. )  ->  ( z  +P.  u
)  e.  P. )
4023, 26, 39syl2anc 411 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( z  +P.  u )  e.  P. )
41 simp3l 1027 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  v  e.  P. )
42 addclpr 7649 . . . . . . 7  |-  ( ( w  e.  P.  /\  v  e.  P. )  ->  ( w  +P.  v
)  e.  P. )
4319, 41, 42syl2anc 411 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( w  +P.  v )  e.  P. )
44 ltaprg 7731 . . . . . 6  |-  ( ( ( z  +P.  u
)  e.  P.  /\  ( w  +P.  v )  e.  P.  /\  y  e.  P. )  ->  (
( z  +P.  u
)  <P  ( w  +P.  v )  <->  ( y  +P.  ( z  +P.  u
) )  <P  (
y  +P.  ( w  +P.  v ) ) ) )
4540, 43, 22, 44syl3anc 1249 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
z  +P.  u )  <P  ( w  +P.  v
)  <->  ( y  +P.  ( z  +P.  u
) )  <P  (
y  +P.  ( w  +P.  v ) ) ) )
4638, 45bitrd 188 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  <->  ( y  +P.  ( z  +P.  u
) )  <P  (
y  +P.  ( w  +P.  v ) ) ) )
4736, 46anbi12d 473 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  /\ 
[ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  ) 
<->  ( ( x  +P.  ( w  +P.  u ) )  <P  ( y  +P.  ( z  +P.  u
) )  /\  (
y  +P.  ( z  +P.  u ) )  <P 
( y  +P.  (
w  +P.  v )
) ) ) )
48 ltsopr 7708 . . . . 5  |-  <P  Or  P.
49 ltrelpr 7617 . . . . 5  |-  <P  C_  ( P.  X.  P. )
5048, 49sotri 5077 . . . 4  |-  ( ( ( x  +P.  (
w  +P.  u )
)  <P  ( y  +P.  ( z  +P.  u
) )  /\  (
y  +P.  ( z  +P.  u ) )  <P 
( y  +P.  (
w  +P.  v )
) )  ->  (
x  +P.  ( w  +P.  u ) )  <P 
( y  +P.  (
w  +P.  v )
) )
51 addclpr 7649 . . . . . . . 8  |-  ( ( x  e.  P.  /\  u  e.  P. )  ->  ( x  +P.  u
)  e.  P. )
5218, 26, 51syl2anc 411 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( x  +P.  u )  e.  P. )
53 addclpr 7649 . . . . . . . 8  |-  ( ( y  e.  P.  /\  v  e.  P. )  ->  ( y  +P.  v
)  e.  P. )
5422, 41, 53syl2anc 411 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( y  +P.  v )  e.  P. )
55 ltaprg 7731 . . . . . . 7  |-  ( ( ( x  +P.  u
)  e.  P.  /\  ( y  +P.  v
)  e.  P.  /\  w  e.  P. )  ->  ( ( x  +P.  u )  <P  (
y  +P.  v )  <->  ( w  +P.  ( x  +P.  u ) ) 
<P  ( w  +P.  (
y  +P.  v )
) ) )
5652, 54, 19, 55syl3anc 1249 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  +P.  u )  <P  ( y  +P.  v
)  <->  ( w  +P.  ( x  +P.  u ) )  <P  ( w  +P.  ( y  +P.  v
) ) ) )
5756biimprd 158 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
w  +P.  ( x  +P.  u ) )  <P 
( w  +P.  (
y  +P.  v )
)  ->  ( x  +P.  u )  <P  (
y  +P.  v )
) )
58 addassprg 7691 . . . . . . . 8  |-  ( ( r  e.  P.  /\  s  e.  P.  /\  t  e.  P. )  ->  (
( r  +P.  s
)  +P.  t )  =  ( r  +P.  ( s  +P.  t
) ) )
5958adantl 277 . . . . . . 7  |-  ( ( ( ( x  e. 
P.  /\  y  e.  P. )  /\  (
z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  /\  ( r  e.  P.  /\  s  e. 
P.  /\  t  e.  P. ) )  ->  (
( r  +P.  s
)  +P.  t )  =  ( r  +P.  ( s  +P.  t
) ) )
6018, 19, 26, 28, 59caov12d 6127 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( x  +P.  ( w  +P.  u
) )  =  ( w  +P.  ( x  +P.  u ) ) )
6122, 19, 41, 28, 59caov12d 6127 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( y  +P.  ( w  +P.  v
) )  =  ( w  +P.  ( y  +P.  v ) ) )
6260, 61breq12d 4056 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  +P.  ( w  +P.  u ) )  <P 
( y  +P.  (
w  +P.  v )
)  <->  ( w  +P.  ( x  +P.  u ) )  <P  ( w  +P.  ( y  +P.  v
) ) ) )
63 ltsrprg 7859 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  <->  ( x  +P.  u )  <P  (
y  +P.  v )
) )
64633adant2 1018 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  <->  ( x  +P.  u )  <P  (
y  +P.  v )
) )
6557, 62, 643imtr4d 203 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
x  +P.  ( w  +P.  u ) )  <P 
( y  +P.  (
w  +P.  v )
)  ->  [ <. x ,  y >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  ) )
6650, 65syl5 32 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( (
( x  +P.  (
w  +P.  u )
)  <P  ( y  +P.  ( z  +P.  u
) )  /\  (
y  +P.  ( z  +P.  u ) )  <P 
( y  +P.  (
w  +P.  v )
) )  ->  [ <. x ,  y >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  ) )
6747, 66sylbid 150 . 2  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( ( [ <. x ,  y
>. ]  ~R  <R  [ <. z ,  w >. ]  ~R  /\ 
[ <. z ,  w >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  )  ->  [ <. x ,  y >. ]  ~R  <R  [ <. v ,  u >. ]  ~R  ) )
681, 5, 9, 13, 673ecoptocl 6710 1  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
( f  <R  g  /\  g  <R  h )  ->  f  <R  h
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1372    e. wcel 2175   <.cop 3635   class class class wbr 4043  (class class class)co 5943   [cec 6617   P.cnp 7403    +P. cpp 7405    <P cltp 7407    ~R cer 7408   R.cnr 7409    <R cltr 7415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4335  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-1o 6501  df-2o 6502  df-oadd 6505  df-omul 6506  df-er 6619  df-ec 6621  df-qs 6625  df-ni 7416  df-pli 7417  df-mi 7418  df-lti 7419  df-plpq 7456  df-mpq 7457  df-enq 7459  df-nqqs 7460  df-plqqs 7461  df-mqqs 7462  df-1nqqs 7463  df-rq 7464  df-ltnqqs 7465  df-enq0 7536  df-nq0 7537  df-0nq0 7538  df-plq0 7539  df-mq0 7540  df-inp 7578  df-iplp 7580  df-iltp 7582  df-enr 7838  df-nr 7839  df-ltr 7842
This theorem is referenced by:  ltposr  7875
  Copyright terms: Public domain W3C validator