| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3nn | Unicode version | ||
| Description: 3 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9096 |
. 2
| |
| 2 | 2nn 9198 |
. . 3
| |
| 3 | peano2nn 9048 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqeltri 2278 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 df-inn 9037 df-2 9095 df-3 9096 |
| This theorem is referenced by: 4nn 9200 3nn0 9313 3z 9401 ige3m2fz 10171 sin01bnd 12068 5ndvds3 12245 3lcm2e6woprm 12408 3lcm2e6 12482 mulrndx 12962 mulridx 12963 mulrslid 12964 rngstrg 12967 unifndx 13058 unifid 13059 unifndxnn 13060 slotsdifunifndx 13064 cnfldstr 14320 tangtx 15310 lgsdir2lem1 15505 lgsdir2lem5 15509 |
| Copyright terms: Public domain | W3C validator |