| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3nn | Unicode version | ||
| Description: 3 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9170 |
. 2
| |
| 2 | 2nn 9272 |
. . 3
| |
| 3 | peano2nn 9122 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqeltri 2302 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-inn 9111 df-2 9169 df-3 9170 |
| This theorem is referenced by: 4nn 9274 3nn0 9387 3z 9475 ige3m2fz 10245 sin01bnd 12268 5ndvds3 12445 3lcm2e6woprm 12608 3lcm2e6 12682 mulrndx 13163 mulridx 13164 mulrslid 13165 rngstrg 13168 unifndx 13259 unifid 13260 unifndxnn 13261 slotsdifunifndx 13265 cnfldstr 14522 tangtx 15512 lgsdir2lem1 15707 lgsdir2lem5 15711 |
| Copyright terms: Public domain | W3C validator |