| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3nn | Unicode version | ||
| Description: 3 is a positive integer. (Contributed by NM, 8-Jan-2006.) | 
| Ref | Expression | 
|---|---|
| 3nn | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-3 9050 | 
. 2
 | |
| 2 | 2nn 9152 | 
. . 3
 | |
| 3 | peano2nn 9002 | 
. . 3
 | |
| 4 | 2, 3 | ax-mp 5 | 
. 2
 | 
| 5 | 1, 4 | eqeltri 2269 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-inn 8991 df-2 9049 df-3 9050 | 
| This theorem is referenced by: 4nn 9154 3nn0 9267 3z 9355 ige3m2fz 10124 sin01bnd 11922 5ndvds3 12099 3lcm2e6woprm 12254 3lcm2e6 12328 mulrndx 12807 mulridx 12808 mulrslid 12809 rngstrg 12812 unifndx 12899 unifid 12900 unifndxnn 12901 slotsdifunifndx 12905 cnfldstr 14114 tangtx 15074 lgsdir2lem1 15269 lgsdir2lem5 15273 | 
| Copyright terms: Public domain | W3C validator |