| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3nn | Unicode version | ||
| Description: 3 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9098 |
. 2
| |
| 2 | 2nn 9200 |
. . 3
| |
| 3 | peano2nn 9050 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqeltri 2278 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 df-inn 9039 df-2 9097 df-3 9098 |
| This theorem is referenced by: 4nn 9202 3nn0 9315 3z 9403 ige3m2fz 10173 sin01bnd 12101 5ndvds3 12278 3lcm2e6woprm 12441 3lcm2e6 12515 mulrndx 12995 mulridx 12996 mulrslid 12997 rngstrg 13000 unifndx 13091 unifid 13092 unifndxnn 13093 slotsdifunifndx 13097 cnfldstr 14353 tangtx 15343 lgsdir2lem1 15538 lgsdir2lem5 15542 |
| Copyright terms: Public domain | W3C validator |