| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3nn | Unicode version | ||
| Description: 3 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9131 |
. 2
| |
| 2 | 2nn 9233 |
. . 3
| |
| 3 | peano2nn 9083 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | 1, 4 | eqeltri 2280 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-inn 9072 df-2 9130 df-3 9131 |
| This theorem is referenced by: 4nn 9235 3nn0 9348 3z 9436 ige3m2fz 10206 sin01bnd 12183 5ndvds3 12360 3lcm2e6woprm 12523 3lcm2e6 12597 mulrndx 13077 mulridx 13078 mulrslid 13079 rngstrg 13082 unifndx 13173 unifid 13174 unifndxnn 13175 slotsdifunifndx 13179 cnfldstr 14435 tangtx 15425 lgsdir2lem1 15620 lgsdir2lem5 15624 |
| Copyright terms: Public domain | W3C validator |