| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulrslid | Unicode version | ||
| Description: Slot property of |
| Ref | Expression |
|---|---|
| mulrslid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mulr 12865 |
. 2
| |
| 2 | 3nn 9198 |
. 2
| |
| 3 | 1, 2 | ndxslid 12799 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fv 5278 df-ov 5946 df-inn 9036 df-2 9094 df-3 9095 df-ndx 12777 df-slot 12778 df-mulr 12865 |
| This theorem is referenced by: rngmulrg 12912 ressmulrg 12919 srngmulrd 12923 ipsmulrd 12953 prdsex 13043 prdsval 13047 prdsmulr 13052 prdsmulrfval 13060 imasex 13079 imasival 13080 imasbas 13081 imasplusg 13082 imasmulr 13083 imasmulfn 13094 imasmulval 13095 imasmulf 13096 qusmulval 13111 qusmulf 13112 fnmgp 13626 mgpvalg 13627 mgpplusgg 13628 mgpex 13629 mgpbasg 13630 mgpscag 13631 mgptsetg 13632 mgpdsg 13634 mgpress 13635 isrng 13638 issrg 13669 isring 13704 ring1 13763 opprvalg 13773 opprmulfvalg 13774 opprex 13777 opprsllem 13778 subrngintm 13916 islmod 13995 rmodislmodlem 14054 sraval 14141 sralemg 14142 sramulrg 14145 srascag 14146 sravscag 14147 sraipg 14148 sraex 14150 crngridl 14234 mpocnfldmul 14267 zlmmulrg 14335 znmul 14346 psrval 14370 fnpsr 14371 |
| Copyright terms: Public domain | W3C validator |