| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulrslid | Unicode version | ||
| Description: Slot property of |
| Ref | Expression |
|---|---|
| mulrslid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mulr 12998 |
. 2
| |
| 2 | 3nn 9219 |
. 2
| |
| 3 | 1, 2 | ndxslid 12932 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fv 5288 df-ov 5960 df-inn 9057 df-2 9115 df-3 9116 df-ndx 12910 df-slot 12911 df-mulr 12998 |
| This theorem is referenced by: rngmulrg 13045 ressmulrg 13052 srngmulrd 13056 ipsmulrd 13086 prdsex 13176 prdsval 13180 prdsmulr 13185 prdsmulrfval 13193 imasex 13212 imasival 13213 imasbas 13214 imasplusg 13215 imasmulr 13216 imasmulfn 13227 imasmulval 13228 imasmulf 13229 qusmulval 13244 qusmulf 13245 fnmgp 13759 mgpvalg 13760 mgpplusgg 13761 mgpex 13762 mgpbasg 13763 mgpscag 13764 mgptsetg 13765 mgpdsg 13767 mgpress 13768 isrng 13771 issrg 13802 isring 13837 ring1 13896 opprvalg 13906 opprmulfvalg 13907 opprex 13910 opprsllem 13911 subrngintm 14049 islmod 14128 rmodislmodlem 14187 sraval 14274 sralemg 14275 sramulrg 14278 srascag 14279 sravscag 14280 sraipg 14281 sraex 14283 crngridl 14367 mpocnfldmul 14400 zlmmulrg 14468 znmul 14479 psrval 14503 fnpsr 14504 |
| Copyright terms: Public domain | W3C validator |