| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulrslid | Unicode version | ||
| Description: Slot property of |
| Ref | Expression |
|---|---|
| mulrslid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mulr 13119 |
. 2
| |
| 2 | 3nn 9269 |
. 2
| |
| 3 | 1, 2 | ndxslid 13052 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fv 5325 df-ov 6003 df-inn 9107 df-2 9165 df-3 9166 df-ndx 13030 df-slot 13031 df-mulr 13119 |
| This theorem is referenced by: rngmulrg 13166 ressmulrg 13173 srngmulrd 13177 ipsmulrd 13207 prdsex 13297 prdsval 13301 prdsmulr 13306 prdsmulrfval 13314 imasex 13333 imasival 13334 imasbas 13335 imasplusg 13336 imasmulr 13337 imasmulfn 13348 imasmulval 13349 imasmulf 13350 qusmulval 13365 qusmulf 13366 fnmgp 13880 mgpvalg 13881 mgpplusgg 13882 mgpex 13883 mgpbasg 13884 mgpscag 13885 mgptsetg 13886 mgpdsg 13888 mgpress 13889 isrng 13892 issrg 13923 isring 13958 ring1 14017 opprvalg 14027 opprmulfvalg 14028 opprex 14031 opprsllem 14032 subrngintm 14170 islmod 14249 rmodislmodlem 14308 sraval 14395 sralemg 14396 sramulrg 14399 srascag 14400 sravscag 14401 sraipg 14402 sraex 14404 crngridl 14488 mpocnfldmul 14521 zlmmulrg 14589 znmul 14600 psrval 14624 fnpsr 14625 |
| Copyright terms: Public domain | W3C validator |