![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulrslid | Unicode version |
Description: Slot property of ![]() |
Ref | Expression |
---|---|
mulrslid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mulr 12709 |
. 2
![]() ![]() ![]() ![]() | |
2 | 3nn 9144 |
. 2
![]() ![]() ![]() ![]() | |
3 | 1, 2 | ndxslid 12643 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fv 5262 df-ov 5921 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-mulr 12709 |
This theorem is referenced by: rngmulrg 12755 ressmulrg 12762 srngmulrd 12766 ipsmulrd 12796 prdsex 12880 imasex 12888 imasival 12889 imasbas 12890 imasplusg 12891 imasmulr 12892 imasmulfn 12903 imasmulval 12904 imasmulf 12905 qusmulval 12920 qusmulf 12921 fnmgp 13418 mgpvalg 13419 mgpplusgg 13420 mgpex 13421 mgpbasg 13422 mgpscag 13423 mgptsetg 13424 mgpdsg 13426 mgpress 13427 isrng 13430 issrg 13461 isring 13496 ring1 13555 opprvalg 13565 opprmulfvalg 13566 opprex 13569 opprsllem 13570 subrngintm 13708 islmod 13787 rmodislmodlem 13846 sraval 13933 sralemg 13934 sramulrg 13937 srascag 13938 sravscag 13939 sraipg 13940 sraex 13942 crngridl 14026 cnfldmul 14054 zlmmulrg 14119 znmul 14130 psrval 14152 fnpsr 14153 |
Copyright terms: Public domain | W3C validator |