ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3z Unicode version

Theorem 3z 9346
Description: 3 is an integer. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
3z  |-  3  e.  ZZ

Proof of Theorem 3z
StepHypRef Expression
1 3nn 9144 . 2  |-  3  e.  NN
21nnzi 9338 1  |-  3  e.  ZZ
Colors of variables: wff set class
Syntax hints:    e. wcel 2164   3c3 9034   ZZcz 9317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-3 9042  df-z 9318
This theorem is referenced by:  fz0to4untppr  10190  4fvwrd4  10206  fzo0to3tp  10286  expnass  10716  ef01bndlem  11899  sin01bnd  11900  sin01gt0  11905  egt2lt3  11923  3dvdsdec  12006  3dvds2dec  12007  n2dvds3  12056  flodddiv4  12075  3lcm2e6woprm  12224  3prm  12266  oddprmge3  12273  2logb9irr  15103  2irrexpq  15108  2logb9irrap  15109  2irrexpqap  15110  lgsdir2lem5  15148  2lgsoddprmlem3  15199  ex-fl  15217  ex-ceil  15218  ex-bc  15221  ex-dvds  15222  ex-gcd  15223
  Copyright terms: Public domain W3C validator