![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2nn | Unicode version |
Description: 2 is a positive integer. (Contributed by NM, 20-Aug-2001.) |
Ref | Expression |
---|---|
2nn |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 9041 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1nn 8993 |
. . 3
![]() ![]() ![]() ![]() | |
3 | peano2nn 8994 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | ax-mp 5 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | eqeltri 2266 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-inn 8983 df-2 9041 |
This theorem is referenced by: 3nn 9144 2nn0 9257 2z 9345 uz3m2nn 9638 ige2m1fz1 10175 qbtwnre 10325 flhalf 10371 sqeq0 10673 sqeq0d 10743 facavg 10817 bcn2 10835 resqrexlemnm 11162 abs00ap 11206 geo2sum 11657 geo2lim 11659 ege2le3 11814 ef01bndlem 11899 mod2eq0even 12019 mod2eq1n2dvds 12020 sqgcd 12166 3lcm2e6woprm 12224 prm2orodd 12264 3prm 12266 4nprm 12267 isprm5lem 12279 divgcdodd 12281 isevengcd2 12296 3lcm2e6 12298 pw2dvdslemn 12303 pw2dvds 12304 pw2dvdseulemle 12305 oddpwdclemxy 12307 oddpwdclemodd 12310 oddpwdclemdc 12311 oddpwdc 12312 sqpweven 12313 2sqpwodd 12314 pythagtriplem4 12406 oddprmdvds 12492 4sqlem5 12520 4sqlem6 12521 4sqlem10 12525 4sqlem12 12540 evenennn 12550 exmidunben 12583 plusgndx 12727 plusgid 12728 plusgndxnn 12729 plusgslid 12730 grpstrg 12743 grpbaseg 12744 grpplusgg 12745 rngstrg 12752 lmodstrd 12781 topgrpstrd 12813 dsndx 12828 dsid 12829 dsslid 12830 dsndxnn 12831 slotsdifdsndx 12838 slotsdifunifndx 12845 dveflem 14872 lgsval 15120 lgsfvalg 15121 lgsfcl2 15122 lgsval2lem 15126 lgsdir2lem2 15145 lgsdir2 15149 gausslemma2dlem1a 15174 gausslemma2dlem1cl 15175 gausslemma2dlem1f1o 15176 gausslemma2dlem4 15180 gausslemma2d 15185 lgseisenlem1 15186 lgseisenlem2 15187 lgseisenlem3 15188 lgseisenlem4 15189 lgsquadlem1 15191 m1lgs 15192 2sqlem3 15204 2sqlem8 15210 ex-fl 15217 ex-ceil 15218 redcwlpolemeq1 15544 nconstwlpolem0 15553 |
Copyright terms: Public domain | W3C validator |