Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2nn | Unicode version |
Description: 2 is a positive integer. (Contributed by NM, 20-Aug-2001.) |
Ref | Expression |
---|---|
2nn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 8875 | . 2 | |
2 | 1nn 8827 | . . 3 | |
3 | peano2nn 8828 | . . 3 | |
4 | 2, 3 | ax-mp 5 | . 2 |
5 | 1, 4 | eqeltri 2230 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2128 (class class class)co 5818 c1 7716 caddc 7718 cn 8816 c2 8867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-sep 4082 ax-cnex 7806 ax-resscn 7807 ax-1re 7809 ax-addrcl 7812 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-iota 5132 df-fv 5175 df-ov 5821 df-inn 8817 df-2 8875 |
This theorem is referenced by: 3nn 8978 2nn0 9090 2z 9178 uz3m2nn 9467 ige2m1fz1 9993 qbtwnre 10138 flhalf 10183 sqeq0 10464 sqeq0d 10532 facavg 10602 bcn2 10620 resqrexlemnm 10900 abs00ap 10944 geo2sum 11393 geo2lim 11395 ege2le3 11550 ef01bndlem 11635 mod2eq0even 11750 mod2eq1n2dvds 11751 sqgcd 11893 3lcm2e6woprm 11943 prm2orodd 11983 3prm 11985 4nprm 11986 divgcdodd 11997 isevengcd2 12012 3lcm2e6 12014 pw2dvdslemn 12019 pw2dvds 12020 pw2dvdseulemle 12021 oddpwdclemxy 12023 oddpwdclemodd 12026 oddpwdclemdc 12027 oddpwdc 12028 sqpweven 12029 2sqpwodd 12030 evenennn 12094 exmidunben 12127 plusgndx 12243 plusgid 12244 plusgslid 12245 grpstrg 12257 grpbaseg 12258 grpplusgg 12259 rngstrg 12265 lmodstrd 12283 topgrpstrd 12301 dsndx 12308 dsid 12309 dsslid 12310 dveflem 13047 ex-fl 13261 ex-ceil 13262 redcwlpolemeq1 13588 nconstwlpolem0 13596 |
Copyright terms: Public domain | W3C validator |