![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2nn | Unicode version |
Description: 2 is a positive integer. (Contributed by NM, 20-Aug-2001.) |
Ref | Expression |
---|---|
2nn |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 9043 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1nn 8995 |
. . 3
![]() ![]() ![]() ![]() | |
3 | peano2nn 8996 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | ax-mp 5 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | eqeltri 2266 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4148 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 df-inn 8985 df-2 9043 |
This theorem is referenced by: 3nn 9147 2nn0 9260 2z 9348 uz3m2nn 9641 ige2m1fz1 10178 qbtwnre 10328 flhalf 10374 sqeq0 10676 sqeq0d 10746 facavg 10820 bcn2 10838 resqrexlemnm 11165 abs00ap 11209 geo2sum 11660 geo2lim 11662 ege2le3 11817 ef01bndlem 11902 mod2eq0even 12022 mod2eq1n2dvds 12023 sqgcd 12169 3lcm2e6woprm 12227 prm2orodd 12267 3prm 12269 4nprm 12270 isprm5lem 12282 divgcdodd 12284 isevengcd2 12299 3lcm2e6 12301 pw2dvdslemn 12306 pw2dvds 12307 pw2dvdseulemle 12308 oddpwdclemxy 12310 oddpwdclemodd 12313 oddpwdclemdc 12314 oddpwdc 12315 sqpweven 12316 2sqpwodd 12317 pythagtriplem4 12409 oddprmdvds 12495 4sqlem5 12523 4sqlem6 12524 4sqlem10 12528 4sqlem12 12543 evenennn 12553 exmidunben 12586 plusgndx 12730 plusgid 12731 plusgndxnn 12732 plusgslid 12733 grpstrg 12746 grpbaseg 12747 grpplusgg 12748 rngstrg 12755 lmodstrd 12784 topgrpstrd 12816 dsndx 12831 dsid 12832 dsslid 12833 dsndxnn 12834 slotsdifdsndx 12841 slotsdifunifndx 12848 cnfldstr 14057 dveflem 14905 lgsval 15161 lgsfvalg 15162 lgsfcl2 15163 lgsval2lem 15167 lgsdir2lem2 15186 lgsdir2 15190 gausslemma2dlem1a 15215 gausslemma2dlem1cl 15216 gausslemma2dlem1f1o 15217 gausslemma2dlem4 15221 gausslemma2d 15226 lgseisenlem1 15227 lgseisenlem2 15228 lgseisenlem3 15229 lgseisenlem4 15230 lgsquadlemofi 15233 lgsquadlem1 15234 lgsquadlem2 15235 lgsquad2lem2 15239 m1lgs 15242 2lgslem1c 15247 2lgslem3a1 15254 2lgslem3d1 15257 2lgslem4 15260 2lgs 15261 2sqlem3 15274 2sqlem8 15280 ex-fl 15287 ex-ceil 15288 redcwlpolemeq1 15614 nconstwlpolem0 15623 |
Copyright terms: Public domain | W3C validator |