Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3nn | GIF version |
Description: 3 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
3nn | ⊢ 3 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 8917 | . 2 ⊢ 3 = (2 + 1) | |
2 | 2nn 9018 | . . 3 ⊢ 2 ∈ ℕ | |
3 | peano2nn 8869 | . . 3 ⊢ (2 ∈ ℕ → (2 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (2 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2239 | 1 ⊢ 3 ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 (class class class)co 5842 1c1 7754 + caddc 7756 ℕcn 8857 2c2 8908 3c3 8909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-inn 8858 df-2 8916 df-3 8917 |
This theorem is referenced by: 4nn 9020 3nn0 9132 3z 9220 ige3m2fz 9984 sin01bnd 11698 3lcm2e6woprm 12018 3lcm2e6 12092 mulrndx 12505 mulrid 12506 mulrslid 12507 rngstrg 12510 tangtx 13399 lgsdir2lem1 13569 lgsdir2lem5 13573 |
Copyright terms: Public domain | W3C validator |