![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3nn | GIF version |
Description: 3 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
3nn | ⊢ 3 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 9044 | . 2 ⊢ 3 = (2 + 1) | |
2 | 2nn 9146 | . . 3 ⊢ 2 ∈ ℕ | |
3 | peano2nn 8996 | . . 3 ⊢ (2 ∈ ℕ → (2 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (2 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2266 | 1 ⊢ 3 ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 (class class class)co 5919 1c1 7875 + caddc 7877 ℕcn 8984 2c2 9035 3c3 9036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4148 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 df-inn 8985 df-2 9043 df-3 9044 |
This theorem is referenced by: 4nn 9148 3nn0 9261 3z 9349 ige3m2fz 10118 sin01bnd 11903 3lcm2e6woprm 12227 3lcm2e6 12301 mulrndx 12750 mulridx 12751 mulrslid 12752 rngstrg 12755 unifndx 12842 unifid 12843 unifndxnn 12844 slotsdifunifndx 12848 cnfldstr 14057 tangtx 15014 lgsdir2lem1 15185 lgsdir2lem5 15189 |
Copyright terms: Public domain | W3C validator |