| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3nn | GIF version | ||
| Description: 3 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3nn | ⊢ 3 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9116 | . 2 ⊢ 3 = (2 + 1) | |
| 2 | 2nn 9218 | . . 3 ⊢ 2 ∈ ℕ | |
| 3 | peano2nn 9068 | . . 3 ⊢ (2 ∈ ℕ → (2 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (2 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2279 | 1 ⊢ 3 ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 (class class class)co 5957 1c1 7946 + caddc 7948 ℕcn 9056 2c2 9107 3c3 9108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4170 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 df-inn 9057 df-2 9115 df-3 9116 |
| This theorem is referenced by: 4nn 9220 3nn0 9333 3z 9421 ige3m2fz 10191 sin01bnd 12143 5ndvds3 12320 3lcm2e6woprm 12483 3lcm2e6 12557 mulrndx 13037 mulridx 13038 mulrslid 13039 rngstrg 13042 unifndx 13133 unifid 13134 unifndxnn 13135 slotsdifunifndx 13139 cnfldstr 14395 tangtx 15385 lgsdir2lem1 15580 lgsdir2lem5 15584 |
| Copyright terms: Public domain | W3C validator |