| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3nn | GIF version | ||
| Description: 3 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3nn | ⊢ 3 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9166 | . 2 ⊢ 3 = (2 + 1) | |
| 2 | 2nn 9268 | . . 3 ⊢ 2 ∈ ℕ | |
| 3 | peano2nn 9118 | . . 3 ⊢ (2 ∈ ℕ → (2 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (2 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2302 | 1 ⊢ 3 ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 (class class class)co 6000 1c1 7996 + caddc 7998 ℕcn 9106 2c2 9157 3c3 9158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-inn 9107 df-2 9165 df-3 9166 |
| This theorem is referenced by: 4nn 9270 3nn0 9383 3z 9471 ige3m2fz 10241 sin01bnd 12263 5ndvds3 12440 3lcm2e6woprm 12603 3lcm2e6 12677 mulrndx 13158 mulridx 13159 mulrslid 13160 rngstrg 13163 unifndx 13254 unifid 13255 unifndxnn 13256 slotsdifunifndx 13260 cnfldstr 14516 tangtx 15506 lgsdir2lem1 15701 lgsdir2lem5 15705 |
| Copyright terms: Public domain | W3C validator |