| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3nn | GIF version | ||
| Description: 3 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3nn | ⊢ 3 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9069 | . 2 ⊢ 3 = (2 + 1) | |
| 2 | 2nn 9171 | . . 3 ⊢ 2 ∈ ℕ | |
| 3 | peano2nn 9021 | . . 3 ⊢ (2 ∈ ℕ → (2 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (2 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 3 ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 (class class class)co 5925 1c1 7899 + caddc 7901 ℕcn 9009 2c2 9060 3c3 9061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9010 df-2 9068 df-3 9069 |
| This theorem is referenced by: 4nn 9173 3nn0 9286 3z 9374 ige3m2fz 10143 sin01bnd 11941 5ndvds3 12118 3lcm2e6woprm 12281 3lcm2e6 12355 mulrndx 12834 mulridx 12835 mulrslid 12836 rngstrg 12839 unifndx 12930 unifid 12931 unifndxnn 12932 slotsdifunifndx 12936 cnfldstr 14192 tangtx 15182 lgsdir2lem1 15377 lgsdir2lem5 15381 |
| Copyright terms: Public domain | W3C validator |