ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemnmsq Unicode version

Theorem resqrexlemnmsq 10981
Description: Lemma for resqrex 10990. The difference between the squares of two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 30-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemnmsq.n  |-  ( ph  ->  N  e.  NN )
resqrexlemnmsq.m  |-  ( ph  ->  M  e.  NN )
resqrexlemnmsq.nm  |-  ( ph  ->  N  <_  M )
Assertion
Ref Expression
resqrexlemnmsq  |-  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  (
( F `  M
) ^ 2 ) )  <  ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) ) )
Distinct variable groups:    y, A, z    ph, y, z    y, M, z    y, N, z
Allowed substitution hints:    F( y, z)

Proof of Theorem resqrexlemnmsq
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . 8  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . . . . . 8  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemf 10971 . . . . . . 7  |-  ( ph  ->  F : NN --> RR+ )
5 resqrexlemnmsq.n . . . . . . 7  |-  ( ph  ->  N  e.  NN )
64, 5ffvelrnd 5632 . . . . . 6  |-  ( ph  ->  ( F `  N
)  e.  RR+ )
76rpred 9653 . . . . 5  |-  ( ph  ->  ( F `  N
)  e.  RR )
87resqcld 10635 . . . 4  |-  ( ph  ->  ( ( F `  N ) ^ 2 )  e.  RR )
98recnd 7948 . . 3  |-  ( ph  ->  ( ( F `  N ) ^ 2 )  e.  CC )
10 resqrexlemnmsq.m . . . . . . 7  |-  ( ph  ->  M  e.  NN )
114, 10ffvelrnd 5632 . . . . . 6  |-  ( ph  ->  ( F `  M
)  e.  RR+ )
1211rpred 9653 . . . . 5  |-  ( ph  ->  ( F `  M
)  e.  RR )
1312resqcld 10635 . . . 4  |-  ( ph  ->  ( ( F `  M ) ^ 2 )  e.  RR )
1413recnd 7948 . . 3  |-  ( ph  ->  ( ( F `  M ) ^ 2 )  e.  CC )
152recnd 7948 . . 3  |-  ( ph  ->  A  e.  CC )
169, 14, 15nnncan2d 8265 . 2  |-  ( ph  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  -  (
( ( F `  M ) ^ 2 )  -  A ) )  =  ( ( ( F `  N
) ^ 2 )  -  ( ( F `
 M ) ^
2 ) ) )
178, 2resubcld 8300 . . . 4  |-  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  A
)  e.  RR )
1813, 2resubcld 8300 . . . 4  |-  ( ph  ->  ( ( ( F `
 M ) ^
2 )  -  A
)  e.  RR )
1917, 18resubcld 8300 . . 3  |-  ( ph  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  -  (
( ( F `  M ) ^ 2 )  -  A ) )  e.  RR )
20 1nn 8889 . . . . . . . 8  |-  1  e.  NN
2120a1i 9 . . . . . . 7  |-  ( ph  ->  1  e.  NN )
224, 21ffvelrnd 5632 . . . . . 6  |-  ( ph  ->  ( F `  1
)  e.  RR+ )
23 2z 9240 . . . . . . 7  |-  2  e.  ZZ
2423a1i 9 . . . . . 6  |-  ( ph  ->  2  e.  ZZ )
2522, 24rpexpcld 10633 . . . . 5  |-  ( ph  ->  ( ( F ` 
1 ) ^ 2 )  e.  RR+ )
26 4nn 9041 . . . . . . . 8  |-  4  e.  NN
2726a1i 9 . . . . . . 7  |-  ( ph  ->  4  e.  NN )
2827nnrpd 9651 . . . . . 6  |-  ( ph  ->  4  e.  RR+ )
295nnzd 9333 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
30 1zzd 9239 . . . . . . 7  |-  ( ph  ->  1  e.  ZZ )
3129, 30zsubcld 9339 . . . . . 6  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
3228, 31rpexpcld 10633 . . . . 5  |-  ( ph  ->  ( 4 ^ ( N  -  1 ) )  e.  RR+ )
3325, 32rpdivcld 9671 . . . 4  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) )  e.  RR+ )
3433rpred 9653 . . 3  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) )  e.  RR )
351, 2, 3resqrexlemover 10974 . . . . . 6  |-  ( (
ph  /\  M  e.  NN )  ->  A  < 
( ( F `  M ) ^ 2 ) )
3610, 35mpdan 419 . . . . 5  |-  ( ph  ->  A  <  ( ( F `  M ) ^ 2 ) )
37 difrp 9649 . . . . . 6  |-  ( ( A  e.  RR  /\  ( ( F `  M ) ^ 2 )  e.  RR )  ->  ( A  < 
( ( F `  M ) ^ 2 )  <->  ( ( ( F `  M ) ^ 2 )  -  A )  e.  RR+ ) )
382, 13, 37syl2anc 409 . . . . 5  |-  ( ph  ->  ( A  <  (
( F `  M
) ^ 2 )  <-> 
( ( ( F `
 M ) ^
2 )  -  A
)  e.  RR+ )
)
3936, 38mpbid 146 . . . 4  |-  ( ph  ->  ( ( ( F `
 M ) ^
2 )  -  A
)  e.  RR+ )
4017, 39ltsubrpd 9686 . . 3  |-  ( ph  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  -  (
( ( F `  M ) ^ 2 )  -  A ) )  <  ( ( ( F `  N
) ^ 2 )  -  A ) )
411, 2, 3resqrexlemcalc3 10980 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) ) )
425, 41mpdan 419 . . 3  |-  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  A
)  <_  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) ) )
4319, 17, 34, 40, 42ltletrd 8342 . 2  |-  ( ph  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  -  (
( ( F `  M ) ^ 2 )  -  A ) )  <  ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) ) )
4416, 43eqbrtrrd 4013 1  |-  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  (
( F `  M
) ^ 2 ) )  <  ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348    e. wcel 2141   {csn 3583   class class class wbr 3989    X. cxp 4609   ` cfv 5198  (class class class)co 5853    e. cmpo 5855   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    < clt 7954    <_ cle 7955    - cmin 8090    / cdiv 8589   NNcn 8878   2c2 8929   4c4 8931   ZZcz 9212   RR+crp 9610    seqcseq 10401   ^cexp 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476
This theorem is referenced by:  resqrexlemnm  10982
  Copyright terms: Public domain W3C validator