ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemnmsq Unicode version

Theorem resqrexlemnmsq 11199
Description: Lemma for resqrex 11208. The difference between the squares of two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 30-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemnmsq.n  |-  ( ph  ->  N  e.  NN )
resqrexlemnmsq.m  |-  ( ph  ->  M  e.  NN )
resqrexlemnmsq.nm  |-  ( ph  ->  N  <_  M )
Assertion
Ref Expression
resqrexlemnmsq  |-  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  (
( F `  M
) ^ 2 ) )  <  ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) ) )
Distinct variable groups:    y, A, z    ph, y, z    y, M, z    y, N, z
Allowed substitution hints:    F( y, z)

Proof of Theorem resqrexlemnmsq
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . 8  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . . . . . 8  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemf 11189 . . . . . . 7  |-  ( ph  ->  F : NN --> RR+ )
5 resqrexlemnmsq.n . . . . . . 7  |-  ( ph  ->  N  e.  NN )
64, 5ffvelcdmd 5701 . . . . . 6  |-  ( ph  ->  ( F `  N
)  e.  RR+ )
76rpred 9788 . . . . 5  |-  ( ph  ->  ( F `  N
)  e.  RR )
87resqcld 10808 . . . 4  |-  ( ph  ->  ( ( F `  N ) ^ 2 )  e.  RR )
98recnd 8072 . . 3  |-  ( ph  ->  ( ( F `  N ) ^ 2 )  e.  CC )
10 resqrexlemnmsq.m . . . . . . 7  |-  ( ph  ->  M  e.  NN )
114, 10ffvelcdmd 5701 . . . . . 6  |-  ( ph  ->  ( F `  M
)  e.  RR+ )
1211rpred 9788 . . . . 5  |-  ( ph  ->  ( F `  M
)  e.  RR )
1312resqcld 10808 . . . 4  |-  ( ph  ->  ( ( F `  M ) ^ 2 )  e.  RR )
1413recnd 8072 . . 3  |-  ( ph  ->  ( ( F `  M ) ^ 2 )  e.  CC )
152recnd 8072 . . 3  |-  ( ph  ->  A  e.  CC )
169, 14, 15nnncan2d 8389 . 2  |-  ( ph  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  -  (
( ( F `  M ) ^ 2 )  -  A ) )  =  ( ( ( F `  N
) ^ 2 )  -  ( ( F `
 M ) ^
2 ) ) )
178, 2resubcld 8424 . . . 4  |-  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  A
)  e.  RR )
1813, 2resubcld 8424 . . . 4  |-  ( ph  ->  ( ( ( F `
 M ) ^
2 )  -  A
)  e.  RR )
1917, 18resubcld 8424 . . 3  |-  ( ph  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  -  (
( ( F `  M ) ^ 2 )  -  A ) )  e.  RR )
20 1nn 9018 . . . . . . . 8  |-  1  e.  NN
2120a1i 9 . . . . . . 7  |-  ( ph  ->  1  e.  NN )
224, 21ffvelcdmd 5701 . . . . . 6  |-  ( ph  ->  ( F `  1
)  e.  RR+ )
23 2z 9371 . . . . . . 7  |-  2  e.  ZZ
2423a1i 9 . . . . . 6  |-  ( ph  ->  2  e.  ZZ )
2522, 24rpexpcld 10806 . . . . 5  |-  ( ph  ->  ( ( F ` 
1 ) ^ 2 )  e.  RR+ )
26 4nn 9171 . . . . . . . 8  |-  4  e.  NN
2726a1i 9 . . . . . . 7  |-  ( ph  ->  4  e.  NN )
2827nnrpd 9786 . . . . . 6  |-  ( ph  ->  4  e.  RR+ )
295nnzd 9464 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
30 1zzd 9370 . . . . . . 7  |-  ( ph  ->  1  e.  ZZ )
3129, 30zsubcld 9470 . . . . . 6  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
3228, 31rpexpcld 10806 . . . . 5  |-  ( ph  ->  ( 4 ^ ( N  -  1 ) )  e.  RR+ )
3325, 32rpdivcld 9806 . . . 4  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) )  e.  RR+ )
3433rpred 9788 . . 3  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) )  e.  RR )
351, 2, 3resqrexlemover 11192 . . . . . 6  |-  ( (
ph  /\  M  e.  NN )  ->  A  < 
( ( F `  M ) ^ 2 ) )
3610, 35mpdan 421 . . . . 5  |-  ( ph  ->  A  <  ( ( F `  M ) ^ 2 ) )
37 difrp 9784 . . . . . 6  |-  ( ( A  e.  RR  /\  ( ( F `  M ) ^ 2 )  e.  RR )  ->  ( A  < 
( ( F `  M ) ^ 2 )  <->  ( ( ( F `  M ) ^ 2 )  -  A )  e.  RR+ ) )
382, 13, 37syl2anc 411 . . . . 5  |-  ( ph  ->  ( A  <  (
( F `  M
) ^ 2 )  <-> 
( ( ( F `
 M ) ^
2 )  -  A
)  e.  RR+ )
)
3936, 38mpbid 147 . . . 4  |-  ( ph  ->  ( ( ( F `
 M ) ^
2 )  -  A
)  e.  RR+ )
4017, 39ltsubrpd 9821 . . 3  |-  ( ph  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  -  (
( ( F `  M ) ^ 2 )  -  A ) )  <  ( ( ( F `  N
) ^ 2 )  -  A ) )
411, 2, 3resqrexlemcalc3 11198 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) ) )
425, 41mpdan 421 . . 3  |-  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  A
)  <_  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) ) )
4319, 17, 34, 40, 42ltletrd 8467 . 2  |-  ( ph  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  -  (
( ( F `  M ) ^ 2 )  -  A ) )  <  ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) ) )
4416, 43eqbrtrrd 4058 1  |-  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  (
( F `  M
) ^ 2 ) )  <  ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2167   {csn 3623   class class class wbr 4034    X. cxp 4662   ` cfv 5259  (class class class)co 5925    e. cmpo 5927   RRcr 7895   0cc0 7896   1c1 7897    + caddc 7899    < clt 8078    <_ cle 8079    - cmin 8214    / cdiv 8716   NNcn 9007   2c2 9058   4c4 9060   ZZcz 9343   RR+crp 9745    seqcseq 10556   ^cexp 10647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-rp 9746  df-seqfrec 10557  df-exp 10648
This theorem is referenced by:  resqrexlemnm  11200
  Copyright terms: Public domain W3C validator