ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemnmsq Unicode version

Theorem resqrexlemnmsq 11528
Description: Lemma for resqrex 11537. The difference between the squares of two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 30-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemnmsq.n  |-  ( ph  ->  N  e.  NN )
resqrexlemnmsq.m  |-  ( ph  ->  M  e.  NN )
resqrexlemnmsq.nm  |-  ( ph  ->  N  <_  M )
Assertion
Ref Expression
resqrexlemnmsq  |-  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  (
( F `  M
) ^ 2 ) )  <  ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) ) )
Distinct variable groups:    y, A, z    ph, y, z    y, M, z    y, N, z
Allowed substitution hints:    F( y, z)

Proof of Theorem resqrexlemnmsq
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . 8  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . . . . . 8  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemf 11518 . . . . . . 7  |-  ( ph  ->  F : NN --> RR+ )
5 resqrexlemnmsq.n . . . . . . 7  |-  ( ph  ->  N  e.  NN )
64, 5ffvelcdmd 5771 . . . . . 6  |-  ( ph  ->  ( F `  N
)  e.  RR+ )
76rpred 9892 . . . . 5  |-  ( ph  ->  ( F `  N
)  e.  RR )
87resqcld 10921 . . . 4  |-  ( ph  ->  ( ( F `  N ) ^ 2 )  e.  RR )
98recnd 8175 . . 3  |-  ( ph  ->  ( ( F `  N ) ^ 2 )  e.  CC )
10 resqrexlemnmsq.m . . . . . . 7  |-  ( ph  ->  M  e.  NN )
114, 10ffvelcdmd 5771 . . . . . 6  |-  ( ph  ->  ( F `  M
)  e.  RR+ )
1211rpred 9892 . . . . 5  |-  ( ph  ->  ( F `  M
)  e.  RR )
1312resqcld 10921 . . . 4  |-  ( ph  ->  ( ( F `  M ) ^ 2 )  e.  RR )
1413recnd 8175 . . 3  |-  ( ph  ->  ( ( F `  M ) ^ 2 )  e.  CC )
152recnd 8175 . . 3  |-  ( ph  ->  A  e.  CC )
169, 14, 15nnncan2d 8492 . 2  |-  ( ph  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  -  (
( ( F `  M ) ^ 2 )  -  A ) )  =  ( ( ( F `  N
) ^ 2 )  -  ( ( F `
 M ) ^
2 ) ) )
178, 2resubcld 8527 . . . 4  |-  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  A
)  e.  RR )
1813, 2resubcld 8527 . . . 4  |-  ( ph  ->  ( ( ( F `
 M ) ^
2 )  -  A
)  e.  RR )
1917, 18resubcld 8527 . . 3  |-  ( ph  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  -  (
( ( F `  M ) ^ 2 )  -  A ) )  e.  RR )
20 1nn 9121 . . . . . . . 8  |-  1  e.  NN
2120a1i 9 . . . . . . 7  |-  ( ph  ->  1  e.  NN )
224, 21ffvelcdmd 5771 . . . . . 6  |-  ( ph  ->  ( F `  1
)  e.  RR+ )
23 2z 9474 . . . . . . 7  |-  2  e.  ZZ
2423a1i 9 . . . . . 6  |-  ( ph  ->  2  e.  ZZ )
2522, 24rpexpcld 10919 . . . . 5  |-  ( ph  ->  ( ( F ` 
1 ) ^ 2 )  e.  RR+ )
26 4nn 9274 . . . . . . . 8  |-  4  e.  NN
2726a1i 9 . . . . . . 7  |-  ( ph  ->  4  e.  NN )
2827nnrpd 9890 . . . . . 6  |-  ( ph  ->  4  e.  RR+ )
295nnzd 9568 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
30 1zzd 9473 . . . . . . 7  |-  ( ph  ->  1  e.  ZZ )
3129, 30zsubcld 9574 . . . . . 6  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
3228, 31rpexpcld 10919 . . . . 5  |-  ( ph  ->  ( 4 ^ ( N  -  1 ) )  e.  RR+ )
3325, 32rpdivcld 9910 . . . 4  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) )  e.  RR+ )
3433rpred 9892 . . 3  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) )  e.  RR )
351, 2, 3resqrexlemover 11521 . . . . . 6  |-  ( (
ph  /\  M  e.  NN )  ->  A  < 
( ( F `  M ) ^ 2 ) )
3610, 35mpdan 421 . . . . 5  |-  ( ph  ->  A  <  ( ( F `  M ) ^ 2 ) )
37 difrp 9888 . . . . . 6  |-  ( ( A  e.  RR  /\  ( ( F `  M ) ^ 2 )  e.  RR )  ->  ( A  < 
( ( F `  M ) ^ 2 )  <->  ( ( ( F `  M ) ^ 2 )  -  A )  e.  RR+ ) )
382, 13, 37syl2anc 411 . . . . 5  |-  ( ph  ->  ( A  <  (
( F `  M
) ^ 2 )  <-> 
( ( ( F `
 M ) ^
2 )  -  A
)  e.  RR+ )
)
3936, 38mpbid 147 . . . 4  |-  ( ph  ->  ( ( ( F `
 M ) ^
2 )  -  A
)  e.  RR+ )
4017, 39ltsubrpd 9925 . . 3  |-  ( ph  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  -  (
( ( F `  M ) ^ 2 )  -  A ) )  <  ( ( ( F `  N
) ^ 2 )  -  A ) )
411, 2, 3resqrexlemcalc3 11527 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) ) )
425, 41mpdan 421 . . 3  |-  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  A
)  <_  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) ) )
4319, 17, 34, 40, 42ltletrd 8570 . 2  |-  ( ph  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  -  (
( ( F `  M ) ^ 2 )  -  A ) )  <  ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) ) )
4416, 43eqbrtrrd 4107 1  |-  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  (
( F `  M
) ^ 2 ) )  <  ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200   {csn 3666   class class class wbr 4083    X. cxp 4717   ` cfv 5318  (class class class)co 6001    e. cmpo 6003   RRcr 7998   0cc0 7999   1c1 8000    + caddc 8002    < clt 8181    <_ cle 8182    - cmin 8317    / cdiv 8819   NNcn 9110   2c2 9161   4c4 9163   ZZcz 9446   RR+crp 9849    seqcseq 10669   ^cexp 10760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-rp 9850  df-seqfrec 10670  df-exp 10761
This theorem is referenced by:  resqrexlemnm  11529
  Copyright terms: Public domain W3C validator