ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemnmsq Unicode version

Theorem resqrexlemnmsq 10629
Description: Lemma for resqrex 10638. The difference between the squares of two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 30-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemnmsq.n  |-  ( ph  ->  N  e.  NN )
resqrexlemnmsq.m  |-  ( ph  ->  M  e.  NN )
resqrexlemnmsq.nm  |-  ( ph  ->  N  <_  M )
Assertion
Ref Expression
resqrexlemnmsq  |-  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  (
( F `  M
) ^ 2 ) )  <  ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) ) )
Distinct variable groups:    y, A, z    ph, y, z    y, M, z    y, N, z
Allowed substitution hints:    F( y, z)

Proof of Theorem resqrexlemnmsq
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . 8  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
2 resqrexlemex.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . . . . . 8  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemf 10619 . . . . . . 7  |-  ( ph  ->  F : NN --> RR+ )
5 resqrexlemnmsq.n . . . . . . 7  |-  ( ph  ->  N  e.  NN )
64, 5ffvelrnd 5488 . . . . . 6  |-  ( ph  ->  ( F `  N
)  e.  RR+ )
76rpred 9330 . . . . 5  |-  ( ph  ->  ( F `  N
)  e.  RR )
87resqcld 10291 . . . 4  |-  ( ph  ->  ( ( F `  N ) ^ 2 )  e.  RR )
98recnd 7666 . . 3  |-  ( ph  ->  ( ( F `  N ) ^ 2 )  e.  CC )
10 resqrexlemnmsq.m . . . . . . 7  |-  ( ph  ->  M  e.  NN )
114, 10ffvelrnd 5488 . . . . . 6  |-  ( ph  ->  ( F `  M
)  e.  RR+ )
1211rpred 9330 . . . . 5  |-  ( ph  ->  ( F `  M
)  e.  RR )
1312resqcld 10291 . . . 4  |-  ( ph  ->  ( ( F `  M ) ^ 2 )  e.  RR )
1413recnd 7666 . . 3  |-  ( ph  ->  ( ( F `  M ) ^ 2 )  e.  CC )
152recnd 7666 . . 3  |-  ( ph  ->  A  e.  CC )
169, 14, 15nnncan2d 7979 . 2  |-  ( ph  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  -  (
( ( F `  M ) ^ 2 )  -  A ) )  =  ( ( ( F `  N
) ^ 2 )  -  ( ( F `
 M ) ^
2 ) ) )
178, 2resubcld 8010 . . . 4  |-  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  A
)  e.  RR )
1813, 2resubcld 8010 . . . 4  |-  ( ph  ->  ( ( ( F `
 M ) ^
2 )  -  A
)  e.  RR )
1917, 18resubcld 8010 . . 3  |-  ( ph  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  -  (
( ( F `  M ) ^ 2 )  -  A ) )  e.  RR )
20 1nn 8589 . . . . . . . 8  |-  1  e.  NN
2120a1i 9 . . . . . . 7  |-  ( ph  ->  1  e.  NN )
224, 21ffvelrnd 5488 . . . . . 6  |-  ( ph  ->  ( F `  1
)  e.  RR+ )
23 2z 8934 . . . . . . 7  |-  2  e.  ZZ
2423a1i 9 . . . . . 6  |-  ( ph  ->  2  e.  ZZ )
2522, 24rpexpcld 10289 . . . . 5  |-  ( ph  ->  ( ( F ` 
1 ) ^ 2 )  e.  RR+ )
26 4nn 8735 . . . . . . . 8  |-  4  e.  NN
2726a1i 9 . . . . . . 7  |-  ( ph  ->  4  e.  NN )
2827nnrpd 9329 . . . . . 6  |-  ( ph  ->  4  e.  RR+ )
295nnzd 9024 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
30 1zzd 8933 . . . . . . 7  |-  ( ph  ->  1  e.  ZZ )
3129, 30zsubcld 9030 . . . . . 6  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
3228, 31rpexpcld 10289 . . . . 5  |-  ( ph  ->  ( 4 ^ ( N  -  1 ) )  e.  RR+ )
3325, 32rpdivcld 9348 . . . 4  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) )  e.  RR+ )
3433rpred 9330 . . 3  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) )  e.  RR )
351, 2, 3resqrexlemover 10622 . . . . . 6  |-  ( (
ph  /\  M  e.  NN )  ->  A  < 
( ( F `  M ) ^ 2 ) )
3610, 35mpdan 415 . . . . 5  |-  ( ph  ->  A  <  ( ( F `  M ) ^ 2 ) )
37 difrp 9327 . . . . . 6  |-  ( ( A  e.  RR  /\  ( ( F `  M ) ^ 2 )  e.  RR )  ->  ( A  < 
( ( F `  M ) ^ 2 )  <->  ( ( ( F `  M ) ^ 2 )  -  A )  e.  RR+ ) )
382, 13, 37syl2anc 406 . . . . 5  |-  ( ph  ->  ( A  <  (
( F `  M
) ^ 2 )  <-> 
( ( ( F `
 M ) ^
2 )  -  A
)  e.  RR+ )
)
3936, 38mpbid 146 . . . 4  |-  ( ph  ->  ( ( ( F `
 M ) ^
2 )  -  A
)  e.  RR+ )
4017, 39ltsubrpd 9363 . . 3  |-  ( ph  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  -  (
( ( F `  M ) ^ 2 )  -  A ) )  <  ( ( ( F `  N
) ^ 2 )  -  A ) )
411, 2, 3resqrexlemcalc3 10628 . . . 4  |-  ( (
ph  /\  N  e.  NN )  ->  ( ( ( F `  N
) ^ 2 )  -  A )  <_ 
( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) ) )
425, 41mpdan 415 . . 3  |-  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  A
)  <_  ( (
( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) ) )
4319, 17, 34, 40, 42ltletrd 8052 . 2  |-  ( ph  ->  ( ( ( ( F `  N ) ^ 2 )  -  A )  -  (
( ( F `  M ) ^ 2 )  -  A ) )  <  ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) ) )
4416, 43eqbrtrrd 3897 1  |-  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  (
( F `  M
) ^ 2 ) )  <  ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1299    e. wcel 1448   {csn 3474   class class class wbr 3875    X. cxp 4475   ` cfv 5059  (class class class)co 5706    e. cmpo 5708   RRcr 7499   0cc0 7500   1c1 7501    + caddc 7503    < clt 7672    <_ cle 7673    - cmin 7804    / cdiv 8293   NNcn 8578   2c2 8629   4c4 8631   ZZcz 8906   RR+crp 9291    seqcseq 10059   ^cexp 10133
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-3 8638  df-4 8639  df-n0 8830  df-z 8907  df-uz 9177  df-rp 9292  df-seqfrec 10060  df-exp 10134
This theorem is referenced by:  resqrexlemnm  10630
  Copyright terms: Public domain W3C validator