| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4nn | GIF version | ||
| Description: 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 4nn | ⊢ 4 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 9051 | . 2 ⊢ 4 = (3 + 1) | |
| 2 | 3nn 9153 | . . 3 ⊢ 3 ∈ ℕ | |
| 3 | peano2nn 9002 | . . 3 ⊢ (3 ∈ ℕ → (3 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (3 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 4 ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 (class class class)co 5922 1c1 7880 + caddc 7882 ℕcn 8990 3c3 9042 4c4 9043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 |
| This theorem is referenced by: 5nn 9155 4nn0 9268 4z 9356 fldiv4p1lem1div2 10395 fldiv4lem1div2uz2 10396 fldiv4lem1div2 10397 iexpcyc 10736 resqrexlemnmsq 11182 ef01bndlem 11921 flodddiv4 12101 flodddiv4t2lthalf 12104 6lcm4e12 12255 2expltfac 12608 starvndx 12816 starvid 12817 starvslid 12818 srngstrd 12823 homid 12906 homslid 12907 dveflem 14962 tan4thpi 15077 gausslemma2dlem0d 15293 gausslemma2dlem3 15304 gausslemma2dlem4 15305 gausslemma2dlem5a 15306 gausslemma2dlem5 15307 gausslemma2dlem6 15308 m1lgs 15326 2lgslem1a2 15328 2lgslem1a 15329 2lgslem1 15332 2lgslem2 15333 2lgslem3a 15334 2lgslem3b 15335 2lgslem3c 15336 2lgslem3d 15337 |
| Copyright terms: Public domain | W3C validator |