![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4nn | GIF version |
Description: 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
4nn | ⊢ 4 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 9043 | . 2 ⊢ 4 = (3 + 1) | |
2 | 3nn 9144 | . . 3 ⊢ 3 ∈ ℕ | |
3 | peano2nn 8994 | . . 3 ⊢ (3 ∈ ℕ → (3 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (3 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2266 | 1 ⊢ 4 ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 (class class class)co 5918 1c1 7873 + caddc 7875 ℕcn 8982 3c3 9034 4c4 9035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 |
This theorem is referenced by: 5nn 9146 4nn0 9259 4z 9347 fldiv4p1lem1div2 10374 fldiv4lem1div2uz2 10375 fldiv4lem1div2 10376 iexpcyc 10715 resqrexlemnmsq 11161 ef01bndlem 11899 flodddiv4 12075 flodddiv4t2lthalf 12078 6lcm4e12 12225 starvndx 12756 starvid 12757 starvslid 12758 srngstrd 12763 homid 12846 homslid 12847 dveflem 14872 tan4thpi 14976 gausslemma2dlem0d 15168 gausslemma2dlem3 15179 gausslemma2dlem4 15180 gausslemma2dlem5a 15181 gausslemma2dlem5 15182 gausslemma2dlem6 15183 m1lgs 15192 |
Copyright terms: Public domain | W3C validator |