| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4nn | GIF version | ||
| Description: 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 4nn | ⊢ 4 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 9079 | . 2 ⊢ 4 = (3 + 1) | |
| 2 | 3nn 9181 | . . 3 ⊢ 3 ∈ ℕ | |
| 3 | peano2nn 9030 | . . 3 ⊢ (3 ∈ ℕ → (3 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (3 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2277 | 1 ⊢ 4 ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 (class class class)co 5934 1c1 7908 + caddc 7910 ℕcn 9018 3c3 9070 4c4 9071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addrcl 8004 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-iota 5229 df-fv 5276 df-ov 5937 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 |
| This theorem is referenced by: 5nn 9183 4nn0 9296 4z 9384 fldiv4p1lem1div2 10429 fldiv4lem1div2uz2 10430 fldiv4lem1div2 10431 iexpcyc 10770 resqrexlemnmsq 11247 ef01bndlem 11986 flodddiv4 12166 flodddiv4t2lthalf 12169 6lcm4e12 12328 2expltfac 12681 starvndx 12889 starvid 12890 starvslid 12891 srngstrd 12896 homndx 12983 homid 12984 homslid 12985 prdsvalstrd 13021 dveflem 15116 tan4thpi 15231 gausslemma2dlem0d 15447 gausslemma2dlem3 15458 gausslemma2dlem4 15459 gausslemma2dlem5a 15460 gausslemma2dlem5 15461 gausslemma2dlem6 15462 m1lgs 15480 2lgslem1a2 15482 2lgslem1a 15483 2lgslem1 15486 2lgslem2 15487 2lgslem3a 15488 2lgslem3b 15489 2lgslem3c 15490 2lgslem3d 15491 |
| Copyright terms: Public domain | W3C validator |