| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4nn | GIF version | ||
| Description: 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 4nn | ⊢ 4 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 9167 | . 2 ⊢ 4 = (3 + 1) | |
| 2 | 3nn 9269 | . . 3 ⊢ 3 ∈ ℕ | |
| 3 | peano2nn 9118 | . . 3 ⊢ (3 ∈ ℕ → (3 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (3 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2302 | 1 ⊢ 4 ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 (class class class)co 6000 1c1 7996 + caddc 7998 ℕcn 9106 3c3 9158 4c4 9159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 |
| This theorem is referenced by: 5nn 9271 4nn0 9384 4z 9472 fldiv4p1lem1div2 10520 fldiv4lem1div2uz2 10521 fldiv4lem1div2 10522 iexpcyc 10861 resqrexlemnmsq 11523 ef01bndlem 12262 flodddiv4 12442 flodddiv4t2lthalf 12445 6lcm4e12 12604 2expltfac 12957 starvndx 13167 starvid 13168 starvslid 13169 srngstrd 13174 homndx 13261 homid 13262 homslid 13263 prdsvalstrd 13299 dveflem 15394 tan4thpi 15509 gausslemma2dlem0d 15725 gausslemma2dlem3 15736 gausslemma2dlem4 15737 gausslemma2dlem5a 15738 gausslemma2dlem5 15739 gausslemma2dlem6 15740 m1lgs 15758 2lgslem1a2 15760 2lgslem1a 15761 2lgslem1 15764 2lgslem2 15765 2lgslem3a 15766 2lgslem3b 15767 2lgslem3c 15768 2lgslem3d 15769 |
| Copyright terms: Public domain | W3C validator |