| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4nn | GIF version | ||
| Description: 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 4nn | ⊢ 4 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 9096 | . 2 ⊢ 4 = (3 + 1) | |
| 2 | 3nn 9198 | . . 3 ⊢ 3 ∈ ℕ | |
| 3 | peano2nn 9047 | . . 3 ⊢ (3 ∈ ℕ → (3 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (3 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2277 | 1 ⊢ 4 ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 (class class class)co 5943 1c1 7925 + caddc 7927 ℕcn 9035 3c3 9087 4c4 9088 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 |
| This theorem is referenced by: 5nn 9200 4nn0 9313 4z 9401 fldiv4p1lem1div2 10446 fldiv4lem1div2uz2 10447 fldiv4lem1div2 10448 iexpcyc 10787 resqrexlemnmsq 11270 ef01bndlem 12009 flodddiv4 12189 flodddiv4t2lthalf 12192 6lcm4e12 12351 2expltfac 12704 starvndx 12913 starvid 12914 starvslid 12915 srngstrd 12920 homndx 13007 homid 13008 homslid 13009 prdsvalstrd 13045 dveflem 15140 tan4thpi 15255 gausslemma2dlem0d 15471 gausslemma2dlem3 15482 gausslemma2dlem4 15483 gausslemma2dlem5a 15484 gausslemma2dlem5 15485 gausslemma2dlem6 15486 m1lgs 15504 2lgslem1a2 15506 2lgslem1a 15507 2lgslem1 15510 2lgslem2 15511 2lgslem3a 15512 2lgslem3b 15513 2lgslem3c 15514 2lgslem3d 15515 |
| Copyright terms: Public domain | W3C validator |