![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4nn | GIF version |
Description: 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
4nn | ⊢ 4 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 9045 | . 2 ⊢ 4 = (3 + 1) | |
2 | 3nn 9147 | . . 3 ⊢ 3 ∈ ℕ | |
3 | peano2nn 8996 | . . 3 ⊢ (3 ∈ ℕ → (3 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (3 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2266 | 1 ⊢ 4 ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 (class class class)co 5919 1c1 7875 + caddc 7877 ℕcn 8984 3c3 9036 4c4 9037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4148 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 |
This theorem is referenced by: 5nn 9149 4nn0 9262 4z 9350 fldiv4p1lem1div2 10377 fldiv4lem1div2uz2 10378 fldiv4lem1div2 10379 iexpcyc 10718 resqrexlemnmsq 11164 ef01bndlem 11902 flodddiv4 12078 flodddiv4t2lthalf 12081 6lcm4e12 12228 starvndx 12759 starvid 12760 starvslid 12761 srngstrd 12766 homid 12849 homslid 12850 dveflem 14905 tan4thpi 15017 gausslemma2dlem0d 15209 gausslemma2dlem3 15220 gausslemma2dlem4 15221 gausslemma2dlem5a 15222 gausslemma2dlem5 15223 gausslemma2dlem6 15224 m1lgs 15242 2lgslem1a2 15244 2lgslem1a 15245 2lgslem1 15248 2lgslem2 15249 2lgslem3a 15250 2lgslem3b 15251 2lgslem3c 15252 2lgslem3d 15253 |
Copyright terms: Public domain | W3C validator |