| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4nn | GIF version | ||
| Description: 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 4nn | ⊢ 4 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 9117 | . 2 ⊢ 4 = (3 + 1) | |
| 2 | 3nn 9219 | . . 3 ⊢ 3 ∈ ℕ | |
| 3 | peano2nn 9068 | . . 3 ⊢ (3 ∈ ℕ → (3 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (3 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2279 | 1 ⊢ 4 ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 (class class class)co 5957 1c1 7946 + caddc 7948 ℕcn 9056 3c3 9108 4c4 9109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4170 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 |
| This theorem is referenced by: 5nn 9221 4nn0 9334 4z 9422 fldiv4p1lem1div2 10470 fldiv4lem1div2uz2 10471 fldiv4lem1div2 10472 iexpcyc 10811 resqrexlemnmsq 11403 ef01bndlem 12142 flodddiv4 12322 flodddiv4t2lthalf 12325 6lcm4e12 12484 2expltfac 12837 starvndx 13046 starvid 13047 starvslid 13048 srngstrd 13053 homndx 13140 homid 13141 homslid 13142 prdsvalstrd 13178 dveflem 15273 tan4thpi 15388 gausslemma2dlem0d 15604 gausslemma2dlem3 15615 gausslemma2dlem4 15616 gausslemma2dlem5a 15617 gausslemma2dlem5 15618 gausslemma2dlem6 15619 m1lgs 15637 2lgslem1a2 15639 2lgslem1a 15640 2lgslem1 15643 2lgslem2 15644 2lgslem3a 15645 2lgslem3b 15646 2lgslem3c 15647 2lgslem3d 15648 |
| Copyright terms: Public domain | W3C validator |