Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4nn | GIF version |
Description: 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
4nn | ⊢ 4 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 8918 | . 2 ⊢ 4 = (3 + 1) | |
2 | 3nn 9019 | . . 3 ⊢ 3 ∈ ℕ | |
3 | peano2nn 8869 | . . 3 ⊢ (3 ∈ ℕ → (3 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (3 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2239 | 1 ⊢ 4 ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 (class class class)co 5842 1c1 7754 + caddc 7756 ℕcn 8857 3c3 8909 4c4 8910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 |
This theorem is referenced by: 5nn 9021 4nn0 9133 4z 9221 fldiv4p1lem1div2 10240 iexpcyc 10559 resqrexlemnmsq 10959 ef01bndlem 11697 flodddiv4 11871 flodddiv4t2lthalf 11874 6lcm4e12 12019 starvndx 12514 starvid 12515 starvslid 12516 srngstrd 12517 dveflem 13327 tan4thpi 13402 |
Copyright terms: Public domain | W3C validator |