ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iexpcyc Unicode version

Theorem iexpcyc 10753
Description: Taking  _i to the  K-th power is the same as using the  K  mod  4 -th power instead, by i4 10751. (Contributed by Mario Carneiro, 7-Jul-2014.)
Assertion
Ref Expression
iexpcyc  |-  ( K  e.  ZZ  ->  (
_i ^ ( K  mod  4 ) )  =  ( _i ^ K ) )

Proof of Theorem iexpcyc
StepHypRef Expression
1 zq 9717 . . . 4  |-  ( K  e.  ZZ  ->  K  e.  QQ )
2 4z 9373 . . . . . 6  |-  4  e.  ZZ
3 zq 9717 . . . . . 6  |-  ( 4  e.  ZZ  ->  4  e.  QQ )
42, 3ax-mp 5 . . . . 5  |-  4  e.  QQ
5 4pos 9104 . . . . 5  |-  0  <  4
6 modqval 10433 . . . . 5  |-  ( ( K  e.  QQ  /\  4  e.  QQ  /\  0  <  4 )  ->  ( K  mod  4 )  =  ( K  -  (
4  x.  ( |_
`  ( K  / 
4 ) ) ) ) )
74, 5, 6mp3an23 1340 . . . 4  |-  ( K  e.  QQ  ->  ( K  mod  4 )  =  ( K  -  (
4  x.  ( |_
`  ( K  / 
4 ) ) ) ) )
81, 7syl 14 . . 3  |-  ( K  e.  ZZ  ->  ( K  mod  4 )  =  ( K  -  (
4  x.  ( |_
`  ( K  / 
4 ) ) ) ) )
98oveq2d 5941 . 2  |-  ( K  e.  ZZ  ->  (
_i ^ ( K  mod  4 ) )  =  ( _i ^
( K  -  (
4  x.  ( |_
`  ( K  / 
4 ) ) ) ) ) )
10 4nn 9171 . . . . . . 7  |-  4  e.  NN
11 znq 9715 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  4  e.  NN )  ->  ( K  /  4
)  e.  QQ )
1210, 11mpan2 425 . . . . . 6  |-  ( K  e.  ZZ  ->  ( K  /  4 )  e.  QQ )
1312flqcld 10384 . . . . 5  |-  ( K  e.  ZZ  ->  ( |_ `  ( K  / 
4 ) )  e.  ZZ )
14 zmulcl 9396 . . . . 5  |-  ( ( 4  e.  ZZ  /\  ( |_ `  ( K  /  4 ) )  e.  ZZ )  -> 
( 4  x.  ( |_ `  ( K  / 
4 ) ) )  e.  ZZ )
152, 13, 14sylancr 414 . . . 4  |-  ( K  e.  ZZ  ->  (
4  x.  ( |_
`  ( K  / 
4 ) ) )  e.  ZZ )
16 ax-icn 7991 . . . . 5  |-  _i  e.  CC
17 iap0 9231 . . . . 5  |-  _i #  0
18 expsubap 10696 . . . . 5  |-  ( ( ( _i  e.  CC  /\  _i #  0 )  /\  ( K  e.  ZZ  /\  ( 4  x.  ( |_ `  ( K  / 
4 ) ) )  e.  ZZ ) )  ->  ( _i ^
( K  -  (
4  x.  ( |_
`  ( K  / 
4 ) ) ) ) )  =  ( ( _i ^ K
)  /  ( _i
^ ( 4  x.  ( |_ `  ( K  /  4 ) ) ) ) ) )
1916, 17, 18mpanl12 436 . . . 4  |-  ( ( K  e.  ZZ  /\  ( 4  x.  ( |_ `  ( K  / 
4 ) ) )  e.  ZZ )  -> 
( _i ^ ( K  -  ( 4  x.  ( |_ `  ( K  /  4
) ) ) ) )  =  ( ( _i ^ K )  /  ( _i ^
( 4  x.  ( |_ `  ( K  / 
4 ) ) ) ) ) )
2015, 19mpdan 421 . . 3  |-  ( K  e.  ZZ  ->  (
_i ^ ( K  -  ( 4  x.  ( |_ `  ( K  /  4 ) ) ) ) )  =  ( ( _i ^ K )  /  (
_i ^ ( 4  x.  ( |_ `  ( K  /  4
) ) ) ) ) )
21 expmulzap 10694 . . . . . . . 8  |-  ( ( ( _i  e.  CC  /\  _i #  0 )  /\  ( 4  e.  ZZ  /\  ( |_ `  ( K  /  4 ) )  e.  ZZ ) )  ->  ( _i ^
( 4  x.  ( |_ `  ( K  / 
4 ) ) ) )  =  ( ( _i ^ 4 ) ^ ( |_ `  ( K  /  4
) ) ) )
2216, 17, 21mpanl12 436 . . . . . . 7  |-  ( ( 4  e.  ZZ  /\  ( |_ `  ( K  /  4 ) )  e.  ZZ )  -> 
( _i ^ (
4  x.  ( |_
`  ( K  / 
4 ) ) ) )  =  ( ( _i ^ 4 ) ^ ( |_ `  ( K  /  4
) ) ) )
232, 13, 22sylancr 414 . . . . . 6  |-  ( K  e.  ZZ  ->  (
_i ^ ( 4  x.  ( |_ `  ( K  /  4
) ) ) )  =  ( ( _i
^ 4 ) ^
( |_ `  ( K  /  4 ) ) ) )
24 i4 10751 . . . . . . . 8  |-  ( _i
^ 4 )  =  1
2524oveq1i 5935 . . . . . . 7  |-  ( ( _i ^ 4 ) ^ ( |_ `  ( K  /  4
) ) )  =  ( 1 ^ ( |_ `  ( K  / 
4 ) ) )
26 1exp 10677 . . . . . . . 8  |-  ( ( |_ `  ( K  /  4 ) )  e.  ZZ  ->  (
1 ^ ( |_
`  ( K  / 
4 ) ) )  =  1 )
2713, 26syl 14 . . . . . . 7  |-  ( K  e.  ZZ  ->  (
1 ^ ( |_
`  ( K  / 
4 ) ) )  =  1 )
2825, 27eqtrid 2241 . . . . . 6  |-  ( K  e.  ZZ  ->  (
( _i ^ 4 ) ^ ( |_
`  ( K  / 
4 ) ) )  =  1 )
2923, 28eqtrd 2229 . . . . 5  |-  ( K  e.  ZZ  ->  (
_i ^ ( 4  x.  ( |_ `  ( K  /  4
) ) ) )  =  1 )
3029oveq2d 5941 . . . 4  |-  ( K  e.  ZZ  ->  (
( _i ^ K
)  /  ( _i
^ ( 4  x.  ( |_ `  ( K  /  4 ) ) ) ) )  =  ( ( _i ^ K )  /  1
) )
31 expclzap 10673 . . . . . 6  |-  ( ( _i  e.  CC  /\  _i #  0  /\  K  e.  ZZ )  ->  (
_i ^ K )  e.  CC )
3216, 17, 31mp3an12 1338 . . . . 5  |-  ( K  e.  ZZ  ->  (
_i ^ K )  e.  CC )
3332div1d 8824 . . . 4  |-  ( K  e.  ZZ  ->  (
( _i ^ K
)  /  1 )  =  ( _i ^ K ) )
3430, 33eqtrd 2229 . . 3  |-  ( K  e.  ZZ  ->  (
( _i ^ K
)  /  ( _i
^ ( 4  x.  ( |_ `  ( K  /  4 ) ) ) ) )  =  ( _i ^ K
) )
3520, 34eqtrd 2229 . 2  |-  ( K  e.  ZZ  ->  (
_i ^ ( K  -  ( 4  x.  ( |_ `  ( K  /  4 ) ) ) ) )  =  ( _i ^ K
) )
369, 35eqtrd 2229 1  |-  ( K  e.  ZZ  ->  (
_i ^ ( K  mod  4 ) )  =  ( _i ^ K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7894   0cc0 7896   1c1 7897   _ici 7898    x. cmul 7901    < clt 8078    - cmin 8214   # cap 8625    / cdiv 8716   NNcn 9007   4c4 9060   ZZcz 9343   QQcq 9710   |_cfl 10375    mod cmo 10431   ^cexp 10647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator