ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srngstrd Unicode version

Theorem srngstrd 12113
Description: A constructed star ring is a structure. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
Hypotheses
Ref Expression
srngstr.r  |-  R  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.x.  >. }  u.  { <. ( *r `  ndx ) ,  .*  >. } )
srngstrd.b  |-  ( ph  ->  B  e.  V )
srngstrd.p  |-  ( ph  ->  .+  e.  W )
srngstrd.m  |-  ( ph  ->  .x.  e.  X )
srngstrd.s  |-  ( ph  ->  .*  e.  Y )
Assertion
Ref Expression
srngstrd  |-  ( ph  ->  R Struct  <. 1 ,  4
>. )

Proof of Theorem srngstrd
StepHypRef Expression
1 srngstr.r . 2  |-  R  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.x.  >. }  u.  { <. ( *r `  ndx ) ,  .*  >. } )
2 srngstrd.b . . . 4  |-  ( ph  ->  B  e.  V )
3 srngstrd.p . . . 4  |-  ( ph  ->  .+  e.  W )
4 srngstrd.m . . . 4  |-  ( ph  ->  .x.  e.  X )
5 eqid 2140 . . . . 5  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.x.  >. }  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }
65rngstrg 12106 . . . 4  |-  ( ( B  e.  V  /\  .+  e.  W  /\  .x.  e.  X )  ->  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.x.  >. } Struct  <. 1 ,  3 >. )
72, 3, 4, 6syl3anc 1217 . . 3  |-  ( ph  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. } Struct  <. 1 ,  3 >. )
8 srngstrd.s . . . 4  |-  ( ph  ->  .*  e.  Y )
9 4nn 8905 . . . . 5  |-  4  e.  NN
10 starvndx 12110 . . . . 5  |-  ( *r `  ndx )  =  4
119, 10strle1g 12081 . . . 4  |-  (  .*  e.  Y  ->  { <. ( *r `  ndx ) ,  .*  >. } Struct  <. 4 ,  4 >. )
128, 11syl 14 . . 3  |-  ( ph  ->  { <. ( *r `  ndx ) ,  .*  >. } Struct  <. 4 ,  4 >. )
13 3lt4 8914 . . . 4  |-  3  <  4
1413a1i 9 . . 3  |-  ( ph  ->  3  <  4 )
157, 12, 14strleund 12079 . 2  |-  ( ph  ->  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.x.  >. }  u.  { <. ( *r `  ndx ) ,  .*  >. } ) Struct  <. 1 ,  4
>. )
161, 15eqbrtrid 3969 1  |-  ( ph  ->  R Struct  <. 1 ,  4
>. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332    e. wcel 1481    u. cun 3072   {csn 3530   {ctp 3532   <.cop 3533   class class class wbr 3935   ` cfv 5129   1c1 7643    < clt 7822   3c3 8794   4c4 8795   Struct cstr 11987   ndxcnx 11988   Basecbs 11991   +g cplusg 12053   .rcmulr 12054   *rcstv 12055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4052  ax-pow 4104  ax-pr 4137  ax-un 4361  ax-setind 4458  ax-cnex 7733  ax-resscn 7734  ax-1cn 7735  ax-1re 7736  ax-icn 7737  ax-addcl 7738  ax-addrcl 7739  ax-mulcl 7740  ax-addcom 7742  ax-addass 7744  ax-distr 7746  ax-i2m1 7747  ax-0lt1 7748  ax-0id 7750  ax-rnegex 7751  ax-cnre 7753  ax-pre-ltirr 7754  ax-pre-ltwlin 7755  ax-pre-lttrn 7756  ax-pre-apti 7757  ax-pre-ltadd 7758
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-dif 3076  df-un 3078  df-in 3080  df-ss 3087  df-nul 3367  df-pw 3515  df-sn 3536  df-pr 3537  df-tp 3538  df-op 3539  df-uni 3743  df-int 3778  df-br 3936  df-opab 3996  df-mpt 3997  df-id 4221  df-xp 4551  df-rel 4552  df-cnv 4553  df-co 4554  df-dm 4555  df-rn 4556  df-res 4557  df-ima 4558  df-iota 5094  df-fun 5131  df-fn 5132  df-f 5133  df-fv 5137  df-riota 5736  df-ov 5783  df-oprab 5784  df-mpo 5785  df-pnf 7824  df-mnf 7825  df-xr 7826  df-ltxr 7827  df-le 7828  df-sub 7957  df-neg 7958  df-inn 8743  df-2 8801  df-3 8802  df-4 8803  df-n0 9000  df-z 9077  df-uz 9349  df-fz 9820  df-struct 11993  df-ndx 11994  df-slot 11995  df-base 11997  df-plusg 12066  df-mulr 12067  df-starv 12068
This theorem is referenced by:  srngbased  12114  srngplusgd  12115  srngmulrd  12116  srnginvld  12117
  Copyright terms: Public domain W3C validator