ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srngstrd Unicode version

Theorem srngstrd 11863
Description: A constructed star ring is a structure. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
Hypotheses
Ref Expression
srngstr.r  |-  R  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.x.  >. }  u.  { <. ( *r `  ndx ) ,  .*  >. } )
srngstrd.b  |-  ( ph  ->  B  e.  V )
srngstrd.p  |-  ( ph  ->  .+  e.  W )
srngstrd.m  |-  ( ph  ->  .x.  e.  X )
srngstrd.s  |-  ( ph  ->  .*  e.  Y )
Assertion
Ref Expression
srngstrd  |-  ( ph  ->  R Struct  <. 1 ,  4
>. )

Proof of Theorem srngstrd
StepHypRef Expression
1 srngstr.r . 2  |-  R  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.x.  >. }  u.  { <. ( *r `  ndx ) ,  .*  >. } )
2 srngstrd.b . . . 4  |-  ( ph  ->  B  e.  V )
3 srngstrd.p . . . 4  |-  ( ph  ->  .+  e.  W )
4 srngstrd.m . . . 4  |-  ( ph  ->  .x.  e.  X )
5 eqid 2100 . . . . 5  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.x.  >. }  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }
65rngstrg 11856 . . . 4  |-  ( ( B  e.  V  /\  .+  e.  W  /\  .x.  e.  X )  ->  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.x.  >. } Struct  <. 1 ,  3 >. )
72, 3, 4, 6syl3anc 1184 . . 3  |-  ( ph  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. } Struct  <. 1 ,  3 >. )
8 srngstrd.s . . . 4  |-  ( ph  ->  .*  e.  Y )
9 4nn 8735 . . . . 5  |-  4  e.  NN
10 starvndx 11860 . . . . 5  |-  ( *r `  ndx )  =  4
119, 10strle1g 11831 . . . 4  |-  (  .*  e.  Y  ->  { <. ( *r `  ndx ) ,  .*  >. } Struct  <. 4 ,  4 >. )
128, 11syl 14 . . 3  |-  ( ph  ->  { <. ( *r `  ndx ) ,  .*  >. } Struct  <. 4 ,  4 >. )
13 3lt4 8744 . . . 4  |-  3  <  4
1413a1i 9 . . 3  |-  ( ph  ->  3  <  4 )
157, 12, 14strleund 11829 . 2  |-  ( ph  ->  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.x.  >. }  u.  { <. ( *r `  ndx ) ,  .*  >. } ) Struct  <. 1 ,  4
>. )
161, 15syl5eqbr 3908 1  |-  ( ph  ->  R Struct  <. 1 ,  4
>. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1299    e. wcel 1448    u. cun 3019   {csn 3474   {ctp 3476   <.cop 3477   class class class wbr 3875   ` cfv 5059   1c1 7501    < clt 7672   3c3 8630   4c4 8631   Struct cstr 11737   ndxcnx 11738   Basecbs 11741   +g cplusg 11803   .rcmulr 11804   *rcstv 11805
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-addass 7597  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-0id 7603  ax-rnegex 7604  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-tp 3482  df-op 3483  df-uni 3684  df-int 3719  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-inn 8579  df-2 8637  df-3 8638  df-4 8639  df-n0 8830  df-z 8907  df-uz 9177  df-fz 9632  df-struct 11743  df-ndx 11744  df-slot 11745  df-base 11747  df-plusg 11816  df-mulr 11817  df-starv 11818
This theorem is referenced by:  srngbased  11864  srngplusgd  11865  srngmulrd  11866  srnginvld  11867
  Copyright terms: Public domain W3C validator