ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flodddiv4t2lthalf Unicode version

Theorem flodddiv4t2lthalf 12450
Description: The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021.)
Assertion
Ref Expression
flodddiv4t2lthalf  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( ( |_
`  ( N  / 
4 ) )  x.  2 )  <  ( N  /  2 ) )

Proof of Theorem flodddiv4t2lthalf
StepHypRef Expression
1 flodddiv4lt 12449 . . 3  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( |_ `  ( N  /  4
) )  <  ( N  /  4 ) )
2 4nn 9274 . . . . . . . 8  |-  4  e.  NN
3 znq 9819 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  4  e.  NN )  ->  ( N  /  4
)  e.  QQ )
42, 3mpan2 425 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( N  /  4 )  e.  QQ )
54flqcld 10497 . . . . . 6  |-  ( N  e.  ZZ  ->  ( |_ `  ( N  / 
4 ) )  e.  ZZ )
65zred 9569 . . . . 5  |-  ( N  e.  ZZ  ->  ( |_ `  ( N  / 
4 ) )  e.  RR )
76adantr 276 . . . 4  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( |_ `  ( N  /  4
) )  e.  RR )
8 qre 9820 . . . . . 6  |-  ( ( N  /  4 )  e.  QQ  ->  ( N  /  4 )  e.  RR )
94, 8syl 14 . . . . 5  |-  ( N  e.  ZZ  ->  ( N  /  4 )  e.  RR )
109adantr 276 . . . 4  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( N  / 
4 )  e.  RR )
11 2re 9180 . . . . . 6  |-  2  e.  RR
12 2pos 9201 . . . . . 6  |-  0  <  2
1311, 12pm3.2i 272 . . . . 5  |-  ( 2  e.  RR  /\  0  <  2 )
1413a1i 9 . . . 4  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( 2  e.  RR  /\  0  <  2 ) )
15 ltmul1 8739 . . . 4  |-  ( ( ( |_ `  ( N  /  4 ) )  e.  RR  /\  ( N  /  4 )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
( ( |_ `  ( N  /  4
) )  <  ( N  /  4 )  <->  ( ( |_ `  ( N  / 
4 ) )  x.  2 )  <  (
( N  /  4
)  x.  2 ) ) )
167, 10, 14, 15syl3anc 1271 . . 3  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( ( |_
`  ( N  / 
4 ) )  < 
( N  /  4
)  <->  ( ( |_
`  ( N  / 
4 ) )  x.  2 )  <  (
( N  /  4
)  x.  2 ) ) )
171, 16mpbid 147 . 2  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( ( |_
`  ( N  / 
4 ) )  x.  2 )  <  (
( N  /  4
)  x.  2 ) )
18 zcn 9451 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  CC )
1918halfcld 9356 . . . . 5  |-  ( N  e.  ZZ  ->  ( N  /  2 )  e.  CC )
20 2cnd 9183 . . . . 5  |-  ( N  e.  ZZ  ->  2  e.  CC )
21 2ap0 9203 . . . . . 6  |-  2 #  0
2221a1i 9 . . . . 5  |-  ( N  e.  ZZ  ->  2 #  0 )
2319, 20, 22divcanap1d 8938 . . . 4  |-  ( N  e.  ZZ  ->  (
( ( N  / 
2 )  /  2
)  x.  2 )  =  ( N  / 
2 ) )
2418, 20, 20, 22, 22divdivap1d 8969 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  /  2 )  =  ( N  / 
( 2  x.  2 ) ) )
25 2t2e4 9265 . . . . . . . 8  |-  ( 2  x.  2 )  =  4
2625a1i 9 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
2  x.  2 )  =  4 )
2726oveq2d 6017 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N  /  ( 2  x.  2 ) )  =  ( N  /  4
) )
2824, 27eqtrd 2262 . . . . 5  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  /  2 )  =  ( N  / 
4 ) )
2928oveq1d 6016 . . . 4  |-  ( N  e.  ZZ  ->  (
( ( N  / 
2 )  /  2
)  x.  2 )  =  ( ( N  /  4 )  x.  2 ) )
3023, 29eqtr3d 2264 . . 3  |-  ( N  e.  ZZ  ->  ( N  /  2 )  =  ( ( N  / 
4 )  x.  2 ) )
3130adantr 276 . 2  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( N  / 
2 )  =  ( ( N  /  4
)  x.  2 ) )
3217, 31breqtrrd 4111 1  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( ( |_
`  ( N  / 
4 ) )  x.  2 )  <  ( N  /  2 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   RRcr 7998   0cc0 7999    x. cmul 8004    < clt 8181   # cap 8728    / cdiv 8819   NNcn 9110   2c2 9161   4c4 9163   ZZcz 9446   QQcq 9814   |_cfl 10488    || cdvds 12298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-q 9815  df-rp 9850  df-fl 10490  df-dvds 12299
This theorem is referenced by:  gausslemma2dlem0e  15732
  Copyright terms: Public domain W3C validator