ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tan4thpi Unicode version

Theorem tan4thpi 13517
Description: The tangent of  pi  / 
4. (Contributed by Mario Carneiro, 5-Apr-2015.)
Assertion
Ref Expression
tan4thpi  |-  ( tan `  ( pi  /  4
) )  =  1

Proof of Theorem tan4thpi
StepHypRef Expression
1 pire 13462 . . . . 5  |-  pi  e.  RR
2 4nn 9030 . . . . 5  |-  4  e.  NN
3 nndivre 8903 . . . . 5  |-  ( ( pi  e.  RR  /\  4  e.  NN )  ->  ( pi  /  4
)  e.  RR )
41, 2, 3mp2an 424 . . . 4  |-  ( pi 
/  4 )  e.  RR
54recni 7921 . . 3  |-  ( pi 
/  4 )  e.  CC
6 sincos4thpi 13516 . . . . 5  |-  ( ( sin `  ( pi 
/  4 ) )  =  ( 1  / 
( sqr `  2
) )  /\  ( cos `  ( pi  / 
4 ) )  =  ( 1  /  ( sqr `  2 ) ) )
76simpri 112 . . . 4  |-  ( cos `  ( pi  /  4
) )  =  ( 1  /  ( sqr `  2 ) )
8 sqrt2re 12106 . . . . . 6  |-  ( sqr `  2 )  e.  RR
98recni 7921 . . . . 5  |-  ( sqr `  2 )  e.  CC
10 2re 8937 . . . . . . 7  |-  2  e.  RR
11 2pos 8958 . . . . . . 7  |-  0  <  2
1210, 11sqrtgt0ii 11084 . . . . . 6  |-  0  <  ( sqr `  2
)
138, 12gt0ap0ii 8536 . . . . 5  |-  ( sqr `  2 ) #  0
14 recap0 8591 . . . . 5  |-  ( ( ( sqr `  2
)  e.  CC  /\  ( sqr `  2 ) #  0 )  ->  (
1  /  ( sqr `  2 ) ) #  0 )
159, 13, 14mp2an 424 . . . 4  |-  ( 1  /  ( sqr `  2
) ) #  0
167, 15eqbrtri 4008 . . 3  |-  ( cos `  ( pi  /  4
) ) #  0
17 tanvalap 11660 . . 3  |-  ( ( ( pi  /  4
)  e.  CC  /\  ( cos `  ( pi 
/  4 ) ) #  0 )  ->  ( tan `  ( pi  / 
4 ) )  =  ( ( sin `  (
pi  /  4 ) )  /  ( cos `  ( pi  /  4
) ) ) )
185, 16, 17mp2an 424 . 2  |-  ( tan `  ( pi  /  4
) )  =  ( ( sin `  (
pi  /  4 ) )  /  ( cos `  ( pi  /  4
) ) )
196simpli 110 . . 3  |-  ( sin `  ( pi  /  4
) )  =  ( 1  /  ( sqr `  2 ) )
2019, 7oveq12i 5863 . 2  |-  ( ( sin `  ( pi 
/  4 ) )  /  ( cos `  (
pi  /  4 ) ) )  =  ( ( 1  /  ( sqr `  2 ) )  /  ( 1  / 
( sqr `  2
) ) )
219, 13recclapi 8648 . . 3  |-  ( 1  /  ( sqr `  2
) )  e.  CC
2221, 15dividapi 8651 . 2  |-  ( ( 1  /  ( sqr `  2 ) )  /  ( 1  / 
( sqr `  2
) ) )  =  1
2318, 20, 223eqtri 2195 1  |-  ( tan `  ( pi  /  4
) )  =  1
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141   class class class wbr 3987   ` cfv 5196  (class class class)co 5851   CCcc 7761   RRcr 7762   0cc0 7763   1c1 7764   # cap 8489    / cdiv 8578   NNcn 8867   2c2 8918   4c4 8920   sqrcsqrt 10949   sincsin 11596   cosccos 11597   tanctan 11598   picpi 11599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-mulrcl 7862  ax-addcom 7863  ax-mulcom 7864  ax-addass 7865  ax-mulass 7866  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-1rid 7870  ax-0id 7871  ax-rnegex 7872  ax-precex 7873  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-apti 7878  ax-pre-ltadd 7879  ax-pre-mulgt0 7880  ax-pre-mulext 7881  ax-arch 7882  ax-caucvg 7883  ax-pre-suploc 7884  ax-addf 7885  ax-mulf 7886
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-disj 3965  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-of 6059  df-1st 6117  df-2nd 6118  df-recs 6282  df-irdg 6347  df-frec 6368  df-1o 6393  df-oadd 6397  df-er 6510  df-map 6625  df-pm 6626  df-en 6716  df-dom 6717  df-fin 6718  df-sup 6958  df-inf 6959  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-reap 8483  df-ap 8490  df-div 8579  df-inn 8868  df-2 8926  df-3 8927  df-4 8928  df-5 8929  df-6 8930  df-7 8931  df-8 8932  df-9 8933  df-n0 9125  df-z 9202  df-uz 9477  df-q 9568  df-rp 9600  df-xneg 9718  df-xadd 9719  df-ioo 9838  df-ioc 9839  df-ico 9840  df-icc 9841  df-fz 9955  df-fzo 10088  df-seqfrec 10391  df-exp 10465  df-fac 10649  df-bc 10671  df-ihash 10699  df-shft 10768  df-cj 10795  df-re 10796  df-im 10797  df-rsqrt 10951  df-abs 10952  df-clim 11231  df-sumdc 11306  df-ef 11600  df-sin 11602  df-cos 11603  df-tan 11604  df-pi 11605  df-rest 12570  df-topgen 12589  df-psmet 12742  df-xmet 12743  df-met 12744  df-bl 12745  df-mopn 12746  df-top 12751  df-topon 12764  df-bases 12796  df-ntr 12851  df-cn 12943  df-cnp 12944  df-tx 13008  df-cncf 13313  df-limced 13380  df-dvap 13381
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator