ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addgt0i Unicode version

Theorem addgt0i 8497
Description: Addition of 2 positive numbers is positive. (Contributed by NM, 16-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Hypotheses
Ref Expression
lt2.1  |-  A  e.  RR
lt2.2  |-  B  e.  RR
Assertion
Ref Expression
addgt0i  |-  ( ( 0  <  A  /\  0  <  B )  -> 
0  <  ( A  +  B ) )

Proof of Theorem addgt0i
StepHypRef Expression
1 lt2.1 . 2  |-  A  e.  RR
2 lt2.2 . 2  |-  B  e.  RR
3 addgt0 8457 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  B ) )  ->  0  <  ( A  +  B
) )
41, 2, 3mpanl12 436 1  |-  ( ( 0  <  A  /\  0  <  B )  -> 
0  <  ( A  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164   class class class wbr 4029  (class class class)co 5910   RRcr 7861   0cc0 7862    + caddc 7865    < clt 8044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4565  ax-cnex 7953  ax-resscn 7954  ax-1cn 7955  ax-1re 7956  ax-icn 7957  ax-addcl 7958  ax-addrcl 7959  ax-mulcl 7960  ax-addcom 7962  ax-addass 7964  ax-i2m1 7967  ax-0id 7970  ax-rnegex 7971  ax-pre-lttrn 7976  ax-pre-ltadd 7978
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4661  df-iota 5207  df-fv 5254  df-ov 5913  df-pnf 8046  df-mnf 8047  df-ltxr 8049
This theorem is referenced by:  addgt0ii  8500
  Copyright terms: Public domain W3C validator