ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addgt0ii Unicode version

Theorem addgt0ii 8518
Description: Addition of 2 positive numbers is positive. (Contributed by NM, 18-May-1999.)
Hypotheses
Ref Expression
lt2.1  |-  A  e.  RR
lt2.2  |-  B  e.  RR
addgt0i.3  |-  0  <  A
addgt0i.4  |-  0  <  B
Assertion
Ref Expression
addgt0ii  |-  0  <  ( A  +  B
)

Proof of Theorem addgt0ii
StepHypRef Expression
1 addgt0i.3 . 2  |-  0  <  A
2 addgt0i.4 . 2  |-  0  <  B
3 lt2.1 . . 3  |-  A  e.  RR
4 lt2.2 . . 3  |-  B  e.  RR
53, 4addgt0i 8515 . 2  |-  ( ( 0  <  A  /\  0  <  B )  -> 
0  <  ( A  +  B ) )
61, 2, 5mp2an 426 1  |-  0  <  ( A  +  B
)
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   RRcr 7878   0cc0 7879    + caddc 7882    < clt 8061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0id 7987  ax-rnegex 7988  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-iota 5219  df-fv 5266  df-ov 5925  df-pnf 8063  df-mnf 8064  df-ltxr 8066
This theorem is referenced by:  eqneg  8759  2pos  9081  3pos  9084  4pos  9087  5pos  9090  6pos  9091  7pos  9092  8pos  9093  9pos  9094
  Copyright terms: Public domain W3C validator