ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addgt0ii Unicode version

Theorem addgt0ii 8389
Description: Addition of 2 positive numbers is positive. (Contributed by NM, 18-May-1999.)
Hypotheses
Ref Expression
lt2.1  |-  A  e.  RR
lt2.2  |-  B  e.  RR
addgt0i.3  |-  0  <  A
addgt0i.4  |-  0  <  B
Assertion
Ref Expression
addgt0ii  |-  0  <  ( A  +  B
)

Proof of Theorem addgt0ii
StepHypRef Expression
1 addgt0i.3 . 2  |-  0  <  A
2 addgt0i.4 . 2  |-  0  <  B
3 lt2.1 . . 3  |-  A  e.  RR
4 lt2.2 . . 3  |-  B  e.  RR
53, 4addgt0i 8386 . 2  |-  ( ( 0  <  A  /\  0  <  B )  -> 
0  <  ( A  +  B ) )
61, 2, 5mp2an 423 1  |-  0  <  ( A  +  B
)
Colors of variables: wff set class
Syntax hints:    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   RRcr 7752   0cc0 7753    + caddc 7756    < clt 7933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-iota 5153  df-fv 5196  df-ov 5845  df-pnf 7935  df-mnf 7936  df-ltxr 7938
This theorem is referenced by:  eqneg  8628  2pos  8948  3pos  8951  4pos  8954  5pos  8957  6pos  8958  7pos  8959  8pos  8960  9pos  8961
  Copyright terms: Public domain W3C validator