ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addsubeq4d Unicode version

Theorem addsubeq4d 8285
Description: Relation between sums and differences. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
pncand.2  |-  ( ph  ->  B  e.  CC )
subaddd.3  |-  ( ph  ->  C  e.  CC )
addsub4d.4  |-  ( ph  ->  D  e.  CC )
Assertion
Ref Expression
addsubeq4d  |-  ( ph  ->  ( ( A  +  B )  =  ( C  +  D )  <-> 
( C  -  A
)  =  ( B  -  D ) ) )

Proof of Theorem addsubeq4d
StepHypRef Expression
1 negidd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 pncand.2 . 2  |-  ( ph  ->  B  e.  CC )
3 subaddd.3 . 2  |-  ( ph  ->  C  e.  CC )
4 addsub4d.4 . 2  |-  ( ph  ->  D  e.  CC )
5 addsubeq4 8138 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  =  ( C  +  D )  <-> 
( C  -  A
)  =  ( B  -  D ) ) )
61, 2, 3, 4, 5syl22anc 1235 1  |-  ( ph  ->  ( ( A  +  B )  =  ( C  +  D )  <-> 
( C  -  A
)  =  ( B  -  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1349    e. wcel 2142  (class class class)co 5857   CCcc 7776    + caddc 7781    - cmin 8094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 610  ax-in2 611  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-14 2145  ax-ext 2153  ax-sep 4108  ax-pow 4161  ax-pr 4195  ax-setind 4522  ax-resscn 7870  ax-1cn 7871  ax-icn 7873  ax-addcl 7874  ax-addrcl 7875  ax-mulcl 7876  ax-addcom 7878  ax-addass 7880  ax-distr 7882  ax-i2m1 7883  ax-0id 7886  ax-rnegex 7887  ax-cnre 7889
This theorem depends on definitions:  df-bi 116  df-3an 976  df-tru 1352  df-fal 1355  df-nf 1455  df-sb 1757  df-eu 2023  df-mo 2024  df-clab 2158  df-cleq 2164  df-clel 2167  df-nfc 2302  df-ne 2342  df-ral 2454  df-rex 2455  df-reu 2456  df-rab 2458  df-v 2733  df-sbc 2957  df-dif 3124  df-un 3126  df-in 3128  df-ss 3135  df-pw 3569  df-sn 3590  df-pr 3591  df-op 3593  df-uni 3798  df-br 3991  df-opab 4052  df-id 4279  df-xp 4618  df-rel 4619  df-cnv 4620  df-co 4621  df-dm 4622  df-iota 5162  df-fun 5202  df-fv 5208  df-riota 5813  df-ov 5860  df-oprab 5861  df-mpo 5862  df-sub 8096
This theorem is referenced by:  cru  8525  pceulem  12252
  Copyright terms: Public domain W3C validator