ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cru Unicode version

Theorem cru 8491
Description: The representation of complex numbers in terms of real and imaginary parts is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
cru  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  +  ( _i  x.  B
) )  =  ( C  +  ( _i  x.  D ) )  <-> 
( A  =  C  /\  B  =  D ) ) )

Proof of Theorem cru
StepHypRef Expression
1 simplrl 525 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  C  e.  RR )
21recnd 7918 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  C  e.  CC )
3 simplll 523 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  A  e.  RR )
43recnd 7918 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  A  e.  CC )
5 simpr 109 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( A  +  ( _i  x.  B
) )  =  ( C  +  ( _i  x.  D ) ) )
6 ax-icn 7839 . . . . . . . . . . 11  |-  _i  e.  CC
76a1i 9 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  _i  e.  CC )
8 simpllr 524 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  B  e.  RR )
98recnd 7918 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  B  e.  CC )
107, 9mulcld 7910 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( _i  x.  B )  e.  CC )
11 simplrr 526 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  D  e.  RR )
1211recnd 7918 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  D  e.  CC )
137, 12mulcld 7910 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( _i  x.  D )  e.  CC )
144, 10, 2, 13addsubeq4d 8251 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( ( A  +  ( _i  x.  B ) )  =  ( C  +  ( _i  x.  D ) )  <->  ( C  -  A )  =  ( ( _i  x.  B
)  -  ( _i  x.  D ) ) ) )
155, 14mpbid 146 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( C  -  A )  =  ( ( _i  x.  B
)  -  ( _i  x.  D ) ) )
168, 11resubcld 8270 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( B  -  D )  e.  RR )
177, 9, 12subdid 8303 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( _i  x.  ( B  -  D
) )  =  ( ( _i  x.  B
)  -  ( _i  x.  D ) ) )
1817, 15eqtr4d 2200 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( _i  x.  ( B  -  D
) )  =  ( C  -  A ) )
191, 3resubcld 8270 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( C  -  A )  e.  RR )
2018, 19eqeltrd 2241 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( _i  x.  ( B  -  D
) )  e.  RR )
21 rimul 8474 . . . . . . . . . . 11  |-  ( ( ( B  -  D
)  e.  RR  /\  ( _i  x.  ( B  -  D )
)  e.  RR )  ->  ( B  -  D )  =  0 )
2216, 20, 21syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( B  -  D )  =  0 )
239, 12, 22subeq0d 8208 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  B  =  D )
2423oveq2d 5852 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( _i  x.  B )  =  ( _i  x.  D ) )
2524oveq1d 5851 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( ( _i  x.  B )  -  ( _i  x.  D
) )  =  ( ( _i  x.  D
)  -  ( _i  x.  D ) ) )
2613subidd 8188 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( ( _i  x.  D )  -  ( _i  x.  D
) )  =  0 )
2715, 25, 263eqtrd 2201 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( C  -  A )  =  0 )
282, 4, 27subeq0d 8208 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  C  =  A )
2928eqcomd 2170 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  A  =  C )
3029, 23jca 304 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( A  +  (
_i  x.  B )
)  =  ( C  +  ( _i  x.  D ) ) )  ->  ( A  =  C  /\  B  =  D ) )
3130ex 114 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  +  ( _i  x.  B
) )  =  ( C  +  ( _i  x.  D ) )  ->  ( A  =  C  /\  B  =  D ) ) )
32 oveq2 5844 . . 3  |-  ( B  =  D  ->  (
_i  x.  B )  =  ( _i  x.  D ) )
33 oveq12 5845 . . 3  |-  ( ( A  =  C  /\  ( _i  x.  B
)  =  ( _i  x.  D ) )  ->  ( A  +  ( _i  x.  B
) )  =  ( C  +  ( _i  x.  D ) ) )
3432, 33sylan2 284 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  ( A  +  ( _i  x.  B ) )  =  ( C  +  ( _i  x.  D ) ) )
3531, 34impbid1 141 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  +  ( _i  x.  B
) )  =  ( C  +  ( _i  x.  D ) )  <-> 
( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135  (class class class)co 5836   CCcc 7742   RRcr 7743   0cc0 7744   _ici 7746    + caddc 7747    x. cmul 7749    - cmin 8060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-iota 5147  df-fun 5184  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-pnf 7926  df-mnf 7927  df-ltxr 7929  df-sub 8062  df-neg 8063  df-reap 8464
This theorem is referenced by:  apreim  8492  apti  8511  creur  8845  creui  8846  cnref1o  9579  efieq  11662
  Copyright terms: Public domain W3C validator