Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cru | Unicode version |
Description: The representation of complex numbers in terms of real and imaginary parts is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
cru |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplrl 530 | . . . . . . 7 | |
2 | 1 | recnd 7948 | . . . . . 6 |
3 | simplll 528 | . . . . . . 7 | |
4 | 3 | recnd 7948 | . . . . . 6 |
5 | simpr 109 | . . . . . . . 8 | |
6 | ax-icn 7869 | . . . . . . . . . . 11 | |
7 | 6 | a1i 9 | . . . . . . . . . 10 |
8 | simpllr 529 | . . . . . . . . . . 11 | |
9 | 8 | recnd 7948 | . . . . . . . . . 10 |
10 | 7, 9 | mulcld 7940 | . . . . . . . . 9 |
11 | simplrr 531 | . . . . . . . . . . 11 | |
12 | 11 | recnd 7948 | . . . . . . . . . 10 |
13 | 7, 12 | mulcld 7940 | . . . . . . . . 9 |
14 | 4, 10, 2, 13 | addsubeq4d 8281 | . . . . . . . 8 |
15 | 5, 14 | mpbid 146 | . . . . . . 7 |
16 | 8, 11 | resubcld 8300 | . . . . . . . . . . 11 |
17 | 7, 9, 12 | subdid 8333 | . . . . . . . . . . . . 13 |
18 | 17, 15 | eqtr4d 2206 | . . . . . . . . . . . 12 |
19 | 1, 3 | resubcld 8300 | . . . . . . . . . . . 12 |
20 | 18, 19 | eqeltrd 2247 | . . . . . . . . . . 11 |
21 | rimul 8504 | . . . . . . . . . . 11 | |
22 | 16, 20, 21 | syl2anc 409 | . . . . . . . . . 10 |
23 | 9, 12, 22 | subeq0d 8238 | . . . . . . . . 9 |
24 | 23 | oveq2d 5869 | . . . . . . . 8 |
25 | 24 | oveq1d 5868 | . . . . . . 7 |
26 | 13 | subidd 8218 | . . . . . . 7 |
27 | 15, 25, 26 | 3eqtrd 2207 | . . . . . 6 |
28 | 2, 4, 27 | subeq0d 8238 | . . . . 5 |
29 | 28 | eqcomd 2176 | . . . 4 |
30 | 29, 23 | jca 304 | . . 3 |
31 | 30 | ex 114 | . 2 |
32 | oveq2 5861 | . . 3 | |
33 | oveq12 5862 | . . 3 | |
34 | 32, 33 | sylan2 284 | . 2 |
35 | 31, 34 | impbid1 141 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 (class class class)co 5853 cc 7772 cr 7773 cc0 7774 ci 7776 caddc 7777 cmul 7779 cmin 8090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-ltxr 7959 df-sub 8092 df-neg 8093 df-reap 8494 |
This theorem is referenced by: apreim 8522 apti 8541 creur 8875 creui 8876 cnref1o 9609 efieq 11698 |
Copyright terms: Public domain | W3C validator |