ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algrflem Unicode version

Theorem algrflem 6314
Description: Lemma for algrf and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
algrflem.1  |-  B  e. 
_V
algrflem.2  |-  C  e. 
_V
Assertion
Ref Expression
algrflem  |-  ( B ( F  o.  1st ) C )  =  ( F `  B )

Proof of Theorem algrflem
StepHypRef Expression
1 df-ov 5946 . 2  |-  ( B ( F  o.  1st ) C )  =  ( ( F  o.  1st ) `  <. B ,  C >. )
2 fo1st 6242 . . . 4  |-  1st : _V -onto-> _V
3 fof 5497 . . . 4  |-  ( 1st
: _V -onto-> _V  ->  1st
: _V --> _V )
42, 3ax-mp 5 . . 3  |-  1st : _V
--> _V
5 algrflem.1 . . . 4  |-  B  e. 
_V
6 algrflem.2 . . . 4  |-  C  e. 
_V
7 opexg 4271 . . . 4  |-  ( ( B  e.  _V  /\  C  e.  _V )  -> 
<. B ,  C >.  e. 
_V )
85, 6, 7mp2an 426 . . 3  |-  <. B ,  C >.  e.  _V
9 fvco3 5649 . . 3  |-  ( ( 1st : _V --> _V  /\  <. B ,  C >.  e. 
_V )  ->  (
( F  o.  1st ) `  <. B ,  C >. )  =  ( F `  ( 1st `  <. B ,  C >. ) ) )
104, 8, 9mp2an 426 . 2  |-  ( ( F  o.  1st ) `  <. B ,  C >. )  =  ( F `
 ( 1st `  <. B ,  C >. )
)
115, 6op1st 6231 . . 3  |-  ( 1st `  <. B ,  C >. )  =  B
1211fveq2i 5578 . 2  |-  ( F `
 ( 1st `  <. B ,  C >. )
)  =  ( F `
 B )
131, 10, 123eqtri 2229 1  |-  ( B ( F  o.  1st ) C )  =  ( F `  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1372    e. wcel 2175   _Vcvv 2771   <.cop 3635    o. ccom 4678   -->wf 5266   -onto->wfo 5268   ` cfv 5270  (class class class)co 5943   1stc1st 6223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fo 5276  df-fv 5278  df-ov 5946  df-1st 6225
This theorem is referenced by:  algrf  12338
  Copyright terms: Public domain W3C validator