ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algrflem Unicode version

Theorem algrflem 6173
Description: Lemma for algrf and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
algrflem.1  |-  B  e. 
_V
algrflem.2  |-  C  e. 
_V
Assertion
Ref Expression
algrflem  |-  ( B ( F  o.  1st ) C )  =  ( F `  B )

Proof of Theorem algrflem
StepHypRef Expression
1 df-ov 5824 . 2  |-  ( B ( F  o.  1st ) C )  =  ( ( F  o.  1st ) `  <. B ,  C >. )
2 fo1st 6102 . . . 4  |-  1st : _V -onto-> _V
3 fof 5391 . . . 4  |-  ( 1st
: _V -onto-> _V  ->  1st
: _V --> _V )
42, 3ax-mp 5 . . 3  |-  1st : _V
--> _V
5 algrflem.1 . . . 4  |-  B  e. 
_V
6 algrflem.2 . . . 4  |-  C  e. 
_V
7 opexg 4188 . . . 4  |-  ( ( B  e.  _V  /\  C  e.  _V )  -> 
<. B ,  C >.  e. 
_V )
85, 6, 7mp2an 423 . . 3  |-  <. B ,  C >.  e.  _V
9 fvco3 5538 . . 3  |-  ( ( 1st : _V --> _V  /\  <. B ,  C >.  e. 
_V )  ->  (
( F  o.  1st ) `  <. B ,  C >. )  =  ( F `  ( 1st `  <. B ,  C >. ) ) )
104, 8, 9mp2an 423 . 2  |-  ( ( F  o.  1st ) `  <. B ,  C >. )  =  ( F `
 ( 1st `  <. B ,  C >. )
)
115, 6op1st 6091 . . 3  |-  ( 1st `  <. B ,  C >. )  =  B
1211fveq2i 5470 . 2  |-  ( F `
 ( 1st `  <. B ,  C >. )
)  =  ( F `
 B )
131, 10, 123eqtri 2182 1  |-  ( B ( F  o.  1st ) C )  =  ( F `  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1335    e. wcel 2128   _Vcvv 2712   <.cop 3563    o. ccom 4589   -->wf 5165   -onto->wfo 5167   ` cfv 5169  (class class class)co 5821   1stc1st 6083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-fo 5175  df-fv 5177  df-ov 5824  df-1st 6085
This theorem is referenced by:  algrf  11913
  Copyright terms: Public domain W3C validator