| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > algrflem | Unicode version | ||
| Description: Lemma for algrf and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| algrflem.1 |
|
| algrflem.2 |
|
| Ref | Expression |
|---|---|
| algrflem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5947 |
. 2
| |
| 2 | fo1st 6243 |
. . . 4
| |
| 3 | fof 5498 |
. . . 4
| |
| 4 | 2, 3 | ax-mp 5 |
. . 3
|
| 5 | algrflem.1 |
. . . 4
| |
| 6 | algrflem.2 |
. . . 4
| |
| 7 | opexg 4272 |
. . . 4
| |
| 8 | 5, 6, 7 | mp2an 426 |
. . 3
|
| 9 | fvco3 5650 |
. . 3
| |
| 10 | 4, 8, 9 | mp2an 426 |
. 2
|
| 11 | 5, 6 | op1st 6232 |
. . 3
|
| 12 | 11 | fveq2i 5579 |
. 2
|
| 13 | 1, 10, 12 | 3eqtri 2230 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fo 5277 df-fv 5279 df-ov 5947 df-1st 6226 |
| This theorem is referenced by: algrf 12367 |
| Copyright terms: Public domain | W3C validator |