ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algrflem Unicode version

Theorem algrflem 6208
Description: Lemma for algrf and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
algrflem.1  |-  B  e. 
_V
algrflem.2  |-  C  e. 
_V
Assertion
Ref Expression
algrflem  |-  ( B ( F  o.  1st ) C )  =  ( F `  B )

Proof of Theorem algrflem
StepHypRef Expression
1 df-ov 5856 . 2  |-  ( B ( F  o.  1st ) C )  =  ( ( F  o.  1st ) `  <. B ,  C >. )
2 fo1st 6136 . . . 4  |-  1st : _V -onto-> _V
3 fof 5420 . . . 4  |-  ( 1st
: _V -onto-> _V  ->  1st
: _V --> _V )
42, 3ax-mp 5 . . 3  |-  1st : _V
--> _V
5 algrflem.1 . . . 4  |-  B  e. 
_V
6 algrflem.2 . . . 4  |-  C  e. 
_V
7 opexg 4213 . . . 4  |-  ( ( B  e.  _V  /\  C  e.  _V )  -> 
<. B ,  C >.  e. 
_V )
85, 6, 7mp2an 424 . . 3  |-  <. B ,  C >.  e.  _V
9 fvco3 5567 . . 3  |-  ( ( 1st : _V --> _V  /\  <. B ,  C >.  e. 
_V )  ->  (
( F  o.  1st ) `  <. B ,  C >. )  =  ( F `  ( 1st `  <. B ,  C >. ) ) )
104, 8, 9mp2an 424 . 2  |-  ( ( F  o.  1st ) `  <. B ,  C >. )  =  ( F `
 ( 1st `  <. B ,  C >. )
)
115, 6op1st 6125 . . 3  |-  ( 1st `  <. B ,  C >. )  =  B
1211fveq2i 5499 . 2  |-  ( F `
 ( 1st `  <. B ,  C >. )
)  =  ( F `
 B )
131, 10, 123eqtri 2195 1  |-  ( B ( F  o.  1st ) C )  =  ( F `  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141   _Vcvv 2730   <.cop 3586    o. ccom 4615   -->wf 5194   -onto->wfo 5196   ` cfv 5198  (class class class)co 5853   1stc1st 6117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fo 5204  df-fv 5206  df-ov 5856  df-1st 6119
This theorem is referenced by:  algrf  11999
  Copyright terms: Public domain W3C validator