ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algrflem GIF version

Theorem algrflem 6205
Description: Lemma for algrf and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
algrflem.1 𝐵 ∈ V
algrflem.2 𝐶 ∈ V
Assertion
Ref Expression
algrflem (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵)

Proof of Theorem algrflem
StepHypRef Expression
1 df-ov 5853 . 2 (𝐵(𝐹 ∘ 1st )𝐶) = ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩)
2 fo1st 6133 . . . 4 1st :V–onto→V
3 fof 5418 . . . 4 (1st :V–onto→V → 1st :V⟶V)
42, 3ax-mp 5 . . 3 1st :V⟶V
5 algrflem.1 . . . 4 𝐵 ∈ V
6 algrflem.2 . . . 4 𝐶 ∈ V
7 opexg 4211 . . . 4 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → ⟨𝐵, 𝐶⟩ ∈ V)
85, 6, 7mp2an 424 . . 3 𝐵, 𝐶⟩ ∈ V
9 fvco3 5565 . . 3 ((1st :V⟶V ∧ ⟨𝐵, 𝐶⟩ ∈ V) → ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩) = (𝐹‘(1st ‘⟨𝐵, 𝐶⟩)))
104, 8, 9mp2an 424 . 2 ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩) = (𝐹‘(1st ‘⟨𝐵, 𝐶⟩))
115, 6op1st 6122 . . 3 (1st ‘⟨𝐵, 𝐶⟩) = 𝐵
1211fveq2i 5497 . 2 (𝐹‘(1st ‘⟨𝐵, 𝐶⟩)) = (𝐹𝐵)
131, 10, 123eqtri 2195 1 (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wcel 2141  Vcvv 2730  cop 3584  ccom 4613  wf 5192  ontowfo 5194  cfv 5196  (class class class)co 5850  1st c1st 6114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fo 5202  df-fv 5204  df-ov 5853  df-1st 6116
This theorem is referenced by:  algrf  11986
  Copyright terms: Public domain W3C validator