ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algrflem GIF version

Theorem algrflem 6232
Description: Lemma for algrf and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
algrflem.1 𝐵 ∈ V
algrflem.2 𝐶 ∈ V
Assertion
Ref Expression
algrflem (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵)

Proof of Theorem algrflem
StepHypRef Expression
1 df-ov 5880 . 2 (𝐵(𝐹 ∘ 1st )𝐶) = ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩)
2 fo1st 6160 . . . 4 1st :V–onto→V
3 fof 5440 . . . 4 (1st :V–onto→V → 1st :V⟶V)
42, 3ax-mp 5 . . 3 1st :V⟶V
5 algrflem.1 . . . 4 𝐵 ∈ V
6 algrflem.2 . . . 4 𝐶 ∈ V
7 opexg 4230 . . . 4 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → ⟨𝐵, 𝐶⟩ ∈ V)
85, 6, 7mp2an 426 . . 3 𝐵, 𝐶⟩ ∈ V
9 fvco3 5589 . . 3 ((1st :V⟶V ∧ ⟨𝐵, 𝐶⟩ ∈ V) → ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩) = (𝐹‘(1st ‘⟨𝐵, 𝐶⟩)))
104, 8, 9mp2an 426 . 2 ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩) = (𝐹‘(1st ‘⟨𝐵, 𝐶⟩))
115, 6op1st 6149 . . 3 (1st ‘⟨𝐵, 𝐶⟩) = 𝐵
1211fveq2i 5520 . 2 (𝐹‘(1st ‘⟨𝐵, 𝐶⟩)) = (𝐹𝐵)
131, 10, 123eqtri 2202 1 (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2148  Vcvv 2739  cop 3597  ccom 4632  wf 5214  ontowfo 5216  cfv 5218  (class class class)co 5877  1st c1st 6141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fo 5224  df-fv 5226  df-ov 5880  df-1st 6143
This theorem is referenced by:  algrf  12047
  Copyright terms: Public domain W3C validator