ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algrflem GIF version

Theorem algrflem 6381
Description: Lemma for algrf and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
algrflem.1 𝐵 ∈ V
algrflem.2 𝐶 ∈ V
Assertion
Ref Expression
algrflem (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵)

Proof of Theorem algrflem
StepHypRef Expression
1 df-ov 6010 . 2 (𝐵(𝐹 ∘ 1st )𝐶) = ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩)
2 fo1st 6309 . . . 4 1st :V–onto→V
3 fof 5550 . . . 4 (1st :V–onto→V → 1st :V⟶V)
42, 3ax-mp 5 . . 3 1st :V⟶V
5 algrflem.1 . . . 4 𝐵 ∈ V
6 algrflem.2 . . . 4 𝐶 ∈ V
7 opexg 4314 . . . 4 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → ⟨𝐵, 𝐶⟩ ∈ V)
85, 6, 7mp2an 426 . . 3 𝐵, 𝐶⟩ ∈ V
9 fvco3 5707 . . 3 ((1st :V⟶V ∧ ⟨𝐵, 𝐶⟩ ∈ V) → ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩) = (𝐹‘(1st ‘⟨𝐵, 𝐶⟩)))
104, 8, 9mp2an 426 . 2 ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩) = (𝐹‘(1st ‘⟨𝐵, 𝐶⟩))
115, 6op1st 6298 . . 3 (1st ‘⟨𝐵, 𝐶⟩) = 𝐵
1211fveq2i 5632 . 2 (𝐹‘(1st ‘⟨𝐵, 𝐶⟩)) = (𝐹𝐵)
131, 10, 123eqtri 2254 1 (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  Vcvv 2799  cop 3669  ccom 4723  wf 5314  ontowfo 5316  cfv 5318  (class class class)co 6007  1st c1st 6290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-ov 6010  df-1st 6292
This theorem is referenced by:  algrf  12575
  Copyright terms: Public domain W3C validator