ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algrflem GIF version

Theorem algrflem 6197
Description: Lemma for algrf and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
algrflem.1 𝐵 ∈ V
algrflem.2 𝐶 ∈ V
Assertion
Ref Expression
algrflem (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵)

Proof of Theorem algrflem
StepHypRef Expression
1 df-ov 5845 . 2 (𝐵(𝐹 ∘ 1st )𝐶) = ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩)
2 fo1st 6125 . . . 4 1st :V–onto→V
3 fof 5410 . . . 4 (1st :V–onto→V → 1st :V⟶V)
42, 3ax-mp 5 . . 3 1st :V⟶V
5 algrflem.1 . . . 4 𝐵 ∈ V
6 algrflem.2 . . . 4 𝐶 ∈ V
7 opexg 4206 . . . 4 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → ⟨𝐵, 𝐶⟩ ∈ V)
85, 6, 7mp2an 423 . . 3 𝐵, 𝐶⟩ ∈ V
9 fvco3 5557 . . 3 ((1st :V⟶V ∧ ⟨𝐵, 𝐶⟩ ∈ V) → ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩) = (𝐹‘(1st ‘⟨𝐵, 𝐶⟩)))
104, 8, 9mp2an 423 . 2 ((𝐹 ∘ 1st )‘⟨𝐵, 𝐶⟩) = (𝐹‘(1st ‘⟨𝐵, 𝐶⟩))
115, 6op1st 6114 . . 3 (1st ‘⟨𝐵, 𝐶⟩) = 𝐵
1211fveq2i 5489 . 2 (𝐹‘(1st ‘⟨𝐵, 𝐶⟩)) = (𝐹𝐵)
131, 10, 123eqtri 2190 1 (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wcel 2136  Vcvv 2726  cop 3579  ccom 4608  wf 5184  ontowfo 5186  cfv 5188  (class class class)co 5842  1st c1st 6106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196  df-ov 5845  df-1st 6108
This theorem is referenced by:  algrf  11977
  Copyright terms: Public domain W3C validator