| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > algrflem | GIF version | ||
| Description: Lemma for algrf and related theorems. (Contributed by Mario Carneiro, 28-May-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| algrflem.1 | ⊢ 𝐵 ∈ V |
| algrflem.2 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| algrflem | ⊢ (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5997 | . 2 ⊢ (𝐵(𝐹 ∘ 1st )𝐶) = ((𝐹 ∘ 1st )‘〈𝐵, 𝐶〉) | |
| 2 | fo1st 6293 | . . . 4 ⊢ 1st :V–onto→V | |
| 3 | fof 5544 | . . . 4 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ 1st :V⟶V |
| 5 | algrflem.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 6 | algrflem.2 | . . . 4 ⊢ 𝐶 ∈ V | |
| 7 | opexg 4313 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ V) → 〈𝐵, 𝐶〉 ∈ V) | |
| 8 | 5, 6, 7 | mp2an 426 | . . 3 ⊢ 〈𝐵, 𝐶〉 ∈ V |
| 9 | fvco3 5698 | . . 3 ⊢ ((1st :V⟶V ∧ 〈𝐵, 𝐶〉 ∈ V) → ((𝐹 ∘ 1st )‘〈𝐵, 𝐶〉) = (𝐹‘(1st ‘〈𝐵, 𝐶〉))) | |
| 10 | 4, 8, 9 | mp2an 426 | . 2 ⊢ ((𝐹 ∘ 1st )‘〈𝐵, 𝐶〉) = (𝐹‘(1st ‘〈𝐵, 𝐶〉)) |
| 11 | 5, 6 | op1st 6282 | . . 3 ⊢ (1st ‘〈𝐵, 𝐶〉) = 𝐵 |
| 12 | 11 | fveq2i 5626 | . 2 ⊢ (𝐹‘(1st ‘〈𝐵, 𝐶〉)) = (𝐹‘𝐵) |
| 13 | 1, 10, 12 | 3eqtri 2254 | 1 ⊢ (𝐵(𝐹 ∘ 1st )𝐶) = (𝐹‘𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 Vcvv 2799 〈cop 3669 ∘ ccom 4720 ⟶wf 5310 –onto→wfo 5312 ‘cfv 5314 (class class class)co 5994 1st c1st 6274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fo 5320 df-fv 5322 df-ov 5997 df-1st 6276 |
| This theorem is referenced by: algrf 12553 |
| Copyright terms: Public domain | W3C validator |