HomeHome Intuitionistic Logic Explorer
Theorem List (p. 87 of 156)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8601-8700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-ap 8601* Define complex apartness. Definition 6.1 of [Geuvers], p. 17.

Two numbers are considered apart if it is possible to separate them. One common usage is that we can divide by a number if it is apart from zero (see for example recclap 8698 which says that a number apart from zero has a reciprocal).

The defining characteristics of an apartness are irreflexivity (apirr 8624), symmetry (apsym 8625), and cotransitivity (apcotr 8626). Apartness implies negated equality, as seen at apne 8642, and the converse would also follow if we assumed excluded middle.

In addition, apartness of complex numbers is tight, which means that two numbers which are not apart are equal (apti 8641).

(Contributed by Jim Kingdon, 26-Jan-2020.)

 |- # 
 =  { <. x ,  y >.  |  E. r  e.  RR  E. s  e. 
 RR  E. t  e.  RR  E. u  e.  RR  (
 ( x  =  ( r  +  ( _i 
 x.  s ) ) 
 /\  y  =  ( t  +  ( _i 
 x.  u ) ) )  /\  ( r #  t  \/  s #  u ) ) }
 
Theoremixi 8602  _i times itself is minus 1. (Contributed by NM, 6-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  ( _i  x.  _i )  =  -u 1
 
Theoreminelr 8603 The imaginary unit  _i is not a real number. (Contributed by NM, 6-May-1999.)
 |- 
 -.  _i  e.  RR
 
Theoremrimul 8604 A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  RR  /\  ( _i  x.  A )  e.  RR )  ->  A  =  0 )
 
Theoremrereim 8605 Decomposition of a real number into real part (itself) and imaginary part (zero). (Contributed by Jim Kingdon, 30-Jan-2020.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  A  =  ( B  +  ( _i  x.  C ) ) ) )  ->  ( B  =  A  /\  C  =  0 )
 )
 
Theoremapreap 8606 Complex apartness and real apartness agree on the real numbers. (Contributed by Jim Kingdon, 31-Jan-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  A #  B ) )
 
Theoremreaplt 8607 Real apartness in terms of less than. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 1-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( A  <  B  \/  B  <  A ) ) )
 
Theoremreapltxor 8608 Real apartness in terms of less than (exclusive-or version). (Contributed by Jim Kingdon, 23-Mar-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( A  <  B  \/_  B  <  A ) ) )
 
Theorem1ap0 8609 One is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.)
 |-  1 #  0
 
Theoremltmul1a 8610 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 15-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  <  B )  ->  ( A  x.  C )  <  ( B  x.  C ) )
 
Theoremltmul1 8611 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( A  <  B  <->  ( A  x.  C )  <  ( B  x.  C ) ) )
 
Theoremlemul1 8612 Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 21-Feb-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( A  <_  B  <->  ( A  x.  C )  <_  ( B  x.  C ) ) )
 
Theoremreapmul1lem 8613 Lemma for reapmul1 8614. (Contributed by Jim Kingdon, 8-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( A #  B 
 <->  ( A  x.  C ) #  ( B  x.  C ) ) )
 
Theoremreapmul1 8614 Multiplication of both sides of real apartness by a real number apart from zero. Special case of apmul1 8807. (Contributed by Jim Kingdon, 8-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C #  0 ) ) 
 ->  ( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
 
Theoremreapadd1 8615 Real addition respects apartness. (Contributed by Jim Kingdon, 13-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  B  <->  ( A  +  C ) #  ( B  +  C ) ) )
 
Theoremreapneg 8616 Real negation respects apartness. (Contributed by Jim Kingdon, 13-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  -u A #  -u B ) )
 
Theoremreapcotr 8617 Real apartness is cotransitive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A #  B  ->  ( A #  C  \/  B #  C ) ) )
 
Theoremremulext1 8618 Left extensionality for multiplication. (Contributed by Jim Kingdon, 19-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  x.  C ) #  ( B  x.  C )  ->  A #  B ) )
 
Theoremremulext2 8619 Right extensionality for real multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( C  x.  A ) #  ( C  x.  B )  ->  A #  B ) )
 
Theoremapsqgt0 8620 The square of a real number apart from zero is positive. (Contributed by Jim Kingdon, 7-Feb-2020.)
 |-  ( ( A  e.  RR  /\  A #  0 ) 
 ->  0  <  ( A  x.  A ) )
 
Theoremcru 8621 The representation of complex numbers in terms of real and imaginary parts is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  ( ( A  +  ( _i  x.  B ) )  =  ( C  +  ( _i  x.  D ) )  <->  ( A  =  C  /\  B  =  D ) ) )
 
Theoremapreim 8622 Complex apartness in terms of real and imaginary parts. (Contributed by Jim Kingdon, 12-Feb-2020.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  ( ( A  +  ( _i  x.  B ) ) #  ( C  +  ( _i  x.  D ) )  <->  ( A #  C  \/  B #  D ) ) )
 
Theoremmulreim 8623 Complex multiplication in terms of real and imaginary parts. (Contributed by Jim Kingdon, 23-Feb-2020.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  ( ( A  +  ( _i  x.  B ) )  x.  ( C  +  ( _i  x.  D ) ) )  =  ( ( ( A  x.  C )  +  -u ( B  x.  D ) )  +  ( _i  x.  (
 ( C  x.  B )  +  ( D  x.  A ) ) ) ) )
 
Theoremapirr 8624 Apartness is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2020.)
 |-  ( A  e.  CC  ->  -.  A #  A )
 
Theoremapsym 8625 Apartness is symmetric. This theorem for real numbers is part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A #  B  <->  B #  A ) )
 
Theoremapcotr 8626 Apartness is cotransitive. (Contributed by Jim Kingdon, 16-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A #  B  ->  ( A #  C  \/  B #  C ) ) )
 
Theoremapadd1 8627 Addition respects apartness. Analogue of addcan 8199 for apartness. (Contributed by Jim Kingdon, 13-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A #  B  <->  ( A  +  C ) #  ( B  +  C ) ) )
 
Theoremapadd2 8628 Addition respects apartness. (Contributed by Jim Kingdon, 16-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A #  B  <->  ( C  +  A ) #  ( C  +  B ) ) )
 
Theoremaddext 8629 Strong extensionality for addition. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 5927. For us, it is proved a different way. (Contributed by Jim Kingdon, 15-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  +  B ) #  ( C  +  D )  ->  ( A #  C  \/  B #  D ) ) )
 
Theoremapneg 8630 Negation respects apartness. (Contributed by Jim Kingdon, 14-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A #  B  <->  -u A #  -u B ) )
 
Theoremmulext1 8631 Left extensionality for complex multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  x.  C ) #  ( B  x.  C )  ->  A #  B ) )
 
Theoremmulext2 8632 Right extensionality for complex multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( C  x.  A ) #  ( C  x.  B )  ->  A #  B ) )
 
Theoremmulext 8633 Strong extensionality for multiplication. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 5927. For us, it is proved a different way. (Contributed by Jim Kingdon, 23-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  ( ( A  x.  B ) #  ( C  x.  D )  ->  ( A #  C  \/  B #  D ) ) )
 
Theoremmulap0r 8634 A product apart from zero. Lemma 2.13 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 24-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  /\  B #  0
 ) )
 
Theoremmsqge0 8635 A square is nonnegative. Lemma 2.35 of [Geuvers], p. 9. (Contributed by NM, 23-May-2007.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( A  e.  RR  ->  0  <_  ( A  x.  A ) )
 
Theoremmsqge0i 8636 A square is nonnegative. (Contributed by NM, 14-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  A  e.  RR   =>    |-  0  <_  ( A  x.  A )
 
Theoremmsqge0d 8637 A square is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  0  <_  ( A  x.  A ) )
 
Theoremmulge0 8638 The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  -> 
 0  <_  ( A  x.  B ) )
 
Theoremmulge0i 8639 The product of two nonnegative numbers is nonnegative. (Contributed by NM, 30-Jul-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <_  A  /\  0  <_  B )  ->  0  <_  ( A  x.  B ) )
 
Theoremmulge0d 8640 The product of two nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  0  <_  B )   =>    |-  ( ph  ->  0  <_  ( A  x.  B ) )
 
Theoremapti 8641 Complex apartness is tight. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  =  B 
 <->  -.  A #  B ) )
 
Theoremapne 8642 Apartness implies negated equality. We cannot in general prove the converse (as shown at neapmkv 15558), which is the whole point of having separate notations for apartness and negated equality. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A #  B  ->  A  =/=  B ) )
 
Theoremapcon4bid 8643 Contrapositive law deduction for apartness. (Contributed by Jim Kingdon, 31-Jul-2023.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   &    |-  ( ph  ->  ( A #  B  <->  C #  D )
 )   =>    |-  ( ph  ->  ( A  =  B  <->  C  =  D ) )
 
Theoremleltap 8644  <_ implies 'less than' is 'apart'. (Contributed by Jim Kingdon, 13-Aug-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( A  <  B  <->  B #  A ) )
 
Theoremgt0ap0 8645 Positive implies apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.)
 |-  ( ( A  e.  RR  /\  0  <  A )  ->  A #  0 )
 
Theoremgt0ap0i 8646 Positive means apart from zero (useful for ordering theorems involving division). (Contributed by Jim Kingdon, 27-Feb-2020.)
 |-  A  e.  RR   =>    |-  ( 0  <  A  ->  A #  0 )
 
Theoremgt0ap0ii 8647 Positive implies apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.)
 |-  A  e.  RR   &    |-  0  <  A   =>    |-  A #  0
 
Theoremgt0ap0d 8648 Positive implies apart from zero. Because of the way we define #,  A must be an element of  RR, not just  RR*. (Contributed by Jim Kingdon, 27-Feb-2020.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <  A )   =>    |-  ( ph  ->  A #  0 )
 
Theoremnegap0 8649 A number is apart from zero iff its negative is apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.)
 |-  ( A  e.  CC  ->  ( A #  0  <->  -u A #  0 ) )
 
Theoremnegap0d 8650 The negative of a number apart from zero is apart from zero. (Contributed by Jim Kingdon, 25-Feb-2024.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  -u A #  0 )
 
Theoremltleap 8651 Less than in terms of non-strict order and apartness. (Contributed by Jim Kingdon, 28-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <-> 
 ( A  <_  B  /\  A #  B ) ) )
 
Theoremltap 8652 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B ) 
 ->  B #  A )
 
Theoremgtapii 8653 'Greater than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  A  <  B   =>    |-  B #  A
 
Theoremltapii 8654 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  A  <  B   =>    |-  A #  B
 
Theoremltapi 8655 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( A  <  B  ->  B #  A )
 
Theoremgtapd 8656 'Greater than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  B #  A )
 
Theoremltapd 8657 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  A #  B )
 
Theoremleltapd 8658  <_ implies 'less than' is 'apart'. (Contributed by Jim Kingdon, 13-Aug-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <_  B )   =>    |-  ( ph  ->  ( A  <  B  <->  B #  A )
 )
 
Theoremap0gt0 8659 A nonnegative number is apart from zero if and only if it is positive. (Contributed by Jim Kingdon, 11-Aug-2021.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( A #  0  <->  0  <  A ) )
 
Theoremap0gt0d 8660 A nonzero nonnegative number is positive. (Contributed by Jim Kingdon, 11-Aug-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  0  <  A )
 
Theoremapsub1 8661 Subtraction respects apartness. Analogue of subcan2 8244 for apartness. (Contributed by Jim Kingdon, 6-Jan-2022.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A #  B  <->  ( A  -  C ) #  ( B  -  C ) ) )
 
Theoremsubap0 8662 Two numbers being apart is equivalent to their difference being apart from zero. (Contributed by Jim Kingdon, 25-Dec-2022.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B ) #  0  <->  A #  B ) )
 
Theoremsubap0d 8663 Two numbers apart from each other have difference apart from zero. (Contributed by Jim Kingdon, 12-Aug-2021.) (Proof shortened by BJ, 15-Aug-2024.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  B )   =>    |-  ( ph  ->  ( A  -  B ) #  0 )
 
Theoremcnstab 8664 Equality of complex numbers is stable. Stability here means  -.  -.  A  =  B  ->  A  =  B as defined at df-stab 832. This theorem for real numbers is Proposition 5.2 of [BauerHanson], p. 27. (Contributed by Jim Kingdon, 1-Aug-2023.) (Proof shortened by BJ, 15-Aug-2024.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  -> STAB 
 A  =  B )
 
Theoremaprcl 8665 Reverse closure for apartness. (Contributed by Jim Kingdon, 19-Dec-2023.)
 |-  ( A #  B  ->  ( A  e.  CC  /\  B  e.  CC )
 )
 
Theoremapsscn 8666* The points apart from a given point are complex numbers. (Contributed by Jim Kingdon, 19-Dec-2023.)
 |- 
 { x  e.  A  |  x #  B }  C_ 
 CC
 
Theoremlt0ap0 8667 A number which is less than zero is apart from zero. (Contributed by Jim Kingdon, 25-Feb-2024.)
 |-  ( ( A  e.  RR  /\  A  <  0
 )  ->  A #  0
 )
 
Theoremlt0ap0d 8668 A real number less than zero is apart from zero. Deduction form. (Contributed by Jim Kingdon, 24-Feb-2024.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  0 )   =>    |-  ( ph  ->  A #  0 )
 
Theoremaptap 8669 Complex apartness (as defined at df-ap 8601) is a tight apartness (as defined at df-tap 7310). (Contributed by Jim Kingdon, 16-Feb-2025.)
 |- # TAp  CC
 
4.3.7  Reciprocals
 
Theoremrecextlem1 8670 Lemma for recexap 8672. (Contributed by Eric Schmidt, 23-May-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  ( _i  x.  B ) )  x.  ( A  -  ( _i  x.  B ) ) )  =  ( ( A  x.  A )  +  ( B  x.  B ) ) )
 
Theoremrecexaplem2 8671 Lemma for recexap 8672. (Contributed by Jim Kingdon, 20-Feb-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) ) #  0 )  ->  (
 ( A  x.  A )  +  ( B  x.  B ) ) #  0 )
 
Theoremrecexap 8672* Existence of reciprocal of nonzero complex number. (Contributed by Jim Kingdon, 20-Feb-2020.)
 |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  E. x  e.  CC  ( A  x.  x )  =  1 )
 
Theoremmulap0 8673 The product of two numbers apart from zero is apart from zero. Lemma 2.15 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( A  x.  B ) #  0 )
 
Theoremmulap0b 8674 The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A #  0  /\  B #  0
 ) 
 <->  ( A  x.  B ) #  0 ) )
 
Theoremmulap0i 8675 The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 23-Feb-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  A #  0   &    |-  B #  0   =>    |-  ( A  x.  B ) #  0
 
Theoremmulap0bd 8676 The product of two numbers apart from zero is apart from zero. Exercise 11.11 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 24-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( ( A #  0  /\  B #  0 )  <->  ( A  x.  B ) #  0 )
 )
 
Theoremmulap0d 8677 The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 23-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  0 )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( A  x.  B ) #  0 )
 
Theoremmulap0bad 8678 A factor of a complex number apart from zero is apart from zero. Partial converse of mulap0d 8677 and consequence of mulap0bd 8676. (Contributed by Jim Kingdon, 24-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  ( A  x.  B ) #  0 )   =>    |-  ( ph  ->  A #  0 )
 
Theoremmulap0bbd 8679 A factor of a complex number apart from zero is apart from zero. Partial converse of mulap0d 8677 and consequence of mulap0bd 8676. (Contributed by Jim Kingdon, 24-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  ( A  x.  B ) #  0 )   =>    |-  ( ph  ->  B #  0 )
 
Theoremmulcanapd 8680 Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  C #  0 )   =>    |-  ( ph  ->  (
 ( C  x.  A )  =  ( C  x.  B )  <->  A  =  B ) )
 
Theoremmulcanap2d 8681 Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  C #  0 )   =>    |-  ( ph  ->  (
 ( A  x.  C )  =  ( B  x.  C )  <->  A  =  B ) )
 
Theoremmulcanapad 8682 Cancellation of a nonzero factor on the left in an equation. One-way deduction form of mulcanapd 8680. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  C #  0 )   &    |-  ( ph  ->  ( C  x.  A )  =  ( C  x.  B ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremmulcanap2ad 8683 Cancellation of a nonzero factor on the right in an equation. One-way deduction form of mulcanap2d 8681. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  C #  0 )   &    |-  ( ph  ->  ( A  x.  C )  =  ( B  x.  C ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremmulcanap 8684 Cancellation law for multiplication (full theorem form). (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( ( C  x.  A )  =  ( C  x.  B )  <->  A  =  B ) )
 
Theoremmulcanap2 8685 Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( ( A  x.  C )  =  ( B  x.  C )  <->  A  =  B ) )
 
Theoremmulcanapi 8686 Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   &    |-  C #  0   =>    |-  ( ( C  x.  A )  =  ( C  x.  B )  <->  A  =  B )
 
Theoremmuleqadd 8687 Property of numbers whose product equals their sum. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 13-Nov-2006.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  =  ( A  +  B ) 
 <->  ( ( A  -  1 )  x.  ( B  -  1 ) )  =  1 ) )
 
Theoremreceuap 8688* Existential uniqueness of reciprocals. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  E! x  e.  CC  ( B  x.  x )  =  A )
 
Theoremmul0eqap 8689 If two numbers are apart from each other and their product is zero, one of them must be zero. (Contributed by Jim Kingdon, 31-Jul-2023.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  B )   &    |-  ( ph  ->  ( A  x.  B )  =  0
 )   =>    |-  ( ph  ->  ( A  =  0  \/  B  =  0 )
 )
 
Theoremrecapb 8690* A complex number has a multiplicative inverse if and only if it is apart from zero. Theorem 11.2.4 of [HoTT], p. (varies), generalized from real to complex numbers. (Contributed by Jim Kingdon, 18-Jan-2025.)
 |-  ( A  e.  CC  ->  ( A #  0  <->  E. x  e.  CC  ( A  x.  x )  =  1 )
 )
 
4.3.8  Division
 
Syntaxcdiv 8691 Extend class notation to include division.
 class  /
 
Definitiondf-div 8692* Define division. Theorem divmulap 8694 relates it to multiplication, and divclap 8697 and redivclap 8750 prove its closure laws. (Contributed by NM, 2-Feb-1995.) Use divvalap 8693 instead. (Revised by Mario Carneiro, 1-Apr-2014.) (New usage is discouraged.)
 |- 
 /  =  ( x  e.  CC ,  y  e.  ( CC  \  {
 0 } )  |->  (
 iota_ z  e.  CC  ( y  x.  z
 )  =  x ) )
 
Theoremdivvalap 8693* Value of division: the (unique) element  x such that  ( B  x.  x )  =  A. This is meaningful only when  B is apart from zero. (Contributed by Jim Kingdon, 21-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  =  ( iota_ x  e. 
 CC  ( B  x.  x )  =  A ) )
 
Theoremdivmulap 8694 Relationship between division and multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( ( A  /  C )  =  B  <->  ( C  x.  B )  =  A ) )
 
Theoremdivmulap2 8695 Relationship between division and multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( ( A  /  C )  =  B  <->  A  =  ( C  x.  B ) ) )
 
Theoremdivmulap3 8696 Relationship between division and multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) ) 
 ->  ( ( A  /  C )  =  B  <->  A  =  ( B  x.  C ) ) )
 
Theoremdivclap 8697 Closure law for division. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  e.  CC )
 
Theoremrecclap 8698 Closure law for reciprocal. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( 1  /  A )  e.  CC )
 
Theoremdivcanap2 8699 A cancellation law for division. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( B  x.  ( A  /  B ) )  =  A )
 
Theoremdivcanap1 8700 A cancellation law for division. (Contributed by Jim Kingdon, 22-Feb-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( ( A  /  B )  x.  B )  =  A )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >