ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubval Unicode version

Theorem grpsubval 13248
Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
grpsubval.b  |-  B  =  ( Base `  G
)
grpsubval.p  |-  .+  =  ( +g  `  G )
grpsubval.i  |-  I  =  ( invg `  G )
grpsubval.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
grpsubval  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  =  ( X 
.+  ( I `  Y ) ) )

Proof of Theorem grpsubval
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsubval.b . . . . 5  |-  B  =  ( Base `  G
)
21a1i 9 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  B  =  ( Base `  G ) )
3 simpl 109 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
42, 3basmexd 12763 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  G  e.  _V )
5 grpsubval.p . . . 4  |-  .+  =  ( +g  `  G )
6 grpsubval.i . . . 4  |-  I  =  ( invg `  G )
7 grpsubval.m . . . 4  |-  .-  =  ( -g `  G )
81, 5, 6, 7grpsubfvalg 13247 . . 3  |-  ( G  e.  _V  ->  .-  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  (
I `  y )
) ) )
94, 8syl 14 . 2  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  .-  =  ( x  e.  B ,  y  e.  B  |->  ( x 
.+  ( I `  y ) ) ) )
10 oveq1 5932 . . . 4  |-  ( x  =  X  ->  (
x  .+  ( I `  y ) )  =  ( X  .+  (
I `  y )
) )
11 fveq2 5561 . . . . 5  |-  ( y  =  Y  ->  (
I `  y )  =  ( I `  Y ) )
1211oveq2d 5941 . . . 4  |-  ( y  =  Y  ->  ( X  .+  ( I `  y ) )  =  ( X  .+  (
I `  Y )
) )
1310, 12sylan9eq 2249 . . 3  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( x  .+  (
I `  y )
)  =  ( X 
.+  ( I `  Y ) ) )
1413adantl 277 . 2  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( x  .+  (
I `  y )
)  =  ( X 
.+  ( I `  Y ) ) )
15 simpr 110 . 2  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
16 plusgslid 12815 . . . . . 6  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
1716slotex 12730 . . . . 5  |-  ( G  e.  _V  ->  ( +g  `  G )  e. 
_V )
184, 17syl 14 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( +g  `  G
)  e.  _V )
195, 18eqeltrid 2283 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  .+  e.  _V )
20 eqid 2196 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
211, 5, 20, 6grpinvfvalg 13244 . . . . . 6  |-  ( G  e.  _V  ->  I  =  ( z  e.  B  |->  ( iota_ w  e.  B  ( w  .+  z )  =  ( 0g `  G ) ) ) )
224, 21syl 14 . . . . 5  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  I  =  ( z  e.  B  |->  ( iota_ w  e.  B  ( w 
.+  z )  =  ( 0g `  G
) ) ) )
23 basfn 12761 . . . . . . . 8  |-  Base  Fn  _V
24 funfvex 5578 . . . . . . . . 9  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
2524funfni 5361 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
2623, 4, 25sylancr 414 . . . . . . 7  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( Base `  G
)  e.  _V )
271, 26eqeltrid 2283 . . . . . 6  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  B  e.  _V )
2827mptexd 5792 . . . . 5  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( z  e.  B  |->  ( iota_ w  e.  B  ( w  .+  z )  =  ( 0g `  G ) ) )  e.  _V )
2922, 28eqeltrd 2273 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  I  e.  _V )
30 fvexg 5580 . . . 4  |-  ( ( I  e.  _V  /\  Y  e.  B )  ->  ( I `  Y
)  e.  _V )
3129, 30sylancom 420 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( I `  Y
)  e.  _V )
32 ovexg 5959 . . 3  |-  ( ( X  e.  B  /\  .+  e.  _V  /\  (
I `  Y )  e.  _V )  ->  ( X  .+  ( I `  Y ) )  e. 
_V )
333, 19, 31, 32syl3anc 1249 . 2  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .+  (
I `  Y )
)  e.  _V )
349, 14, 3, 15, 33ovmpod 6054 1  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  =  ( X 
.+  ( I `  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763    |-> cmpt 4095    Fn wfn 5254   ` cfv 5259   iota_crio 5879  (class class class)co 5925    e. cmpo 5927   Basecbs 12703   +g cplusg 12780   0gc0g 12958   invgcminusg 13203   -gcsg 13204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-minusg 13206  df-sbg 13207
This theorem is referenced by:  grpsubinv  13275  grpsubrcan  13283  grpinvsub  13284  grpinvval2  13285  grpsubid  13286  grpsubid1  13287  grpsubeq0  13288  grpsubadd0sub  13289  grpsubadd  13290  grpsubsub  13291  grpaddsubass  13292  grpnpcan  13294  pwssub  13315  mulgsubdir  13368  subgsubcl  13391  subgsub  13392  issubg4m  13399  qussub  13443  ghmsub  13457  ablsub2inv  13517  ablsub4  13519  ablsubsub4  13525  eqgabl  13536  rngsubdi  13583  rngsubdir  13584  ringsubdi  13688  ringsubdir  13689  lmodvsubval2  13974  lmodsubdir  13977  cnfldsub  14207
  Copyright terms: Public domain W3C validator