ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubval Unicode version

Theorem grpsubval 13296
Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
grpsubval.b  |-  B  =  ( Base `  G
)
grpsubval.p  |-  .+  =  ( +g  `  G )
grpsubval.i  |-  I  =  ( invg `  G )
grpsubval.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
grpsubval  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  =  ( X 
.+  ( I `  Y ) ) )

Proof of Theorem grpsubval
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsubval.b . . . . 5  |-  B  =  ( Base `  G
)
21a1i 9 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  B  =  ( Base `  G ) )
3 simpl 109 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
42, 3basmexd 12811 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  G  e.  _V )
5 grpsubval.p . . . 4  |-  .+  =  ( +g  `  G )
6 grpsubval.i . . . 4  |-  I  =  ( invg `  G )
7 grpsubval.m . . . 4  |-  .-  =  ( -g `  G )
81, 5, 6, 7grpsubfvalg 13295 . . 3  |-  ( G  e.  _V  ->  .-  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  (
I `  y )
) ) )
94, 8syl 14 . 2  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  .-  =  ( x  e.  B ,  y  e.  B  |->  ( x 
.+  ( I `  y ) ) ) )
10 oveq1 5941 . . . 4  |-  ( x  =  X  ->  (
x  .+  ( I `  y ) )  =  ( X  .+  (
I `  y )
) )
11 fveq2 5570 . . . . 5  |-  ( y  =  Y  ->  (
I `  y )  =  ( I `  Y ) )
1211oveq2d 5950 . . . 4  |-  ( y  =  Y  ->  ( X  .+  ( I `  y ) )  =  ( X  .+  (
I `  Y )
) )
1310, 12sylan9eq 2257 . . 3  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( x  .+  (
I `  y )
)  =  ( X 
.+  ( I `  Y ) ) )
1413adantl 277 . 2  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( x  .+  (
I `  y )
)  =  ( X 
.+  ( I `  Y ) ) )
15 simpr 110 . 2  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
16 plusgslid 12863 . . . . . 6  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
1716slotex 12778 . . . . 5  |-  ( G  e.  _V  ->  ( +g  `  G )  e. 
_V )
184, 17syl 14 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( +g  `  G
)  e.  _V )
195, 18eqeltrid 2291 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  .+  e.  _V )
20 eqid 2204 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
211, 5, 20, 6grpinvfvalg 13292 . . . . . 6  |-  ( G  e.  _V  ->  I  =  ( z  e.  B  |->  ( iota_ w  e.  B  ( w  .+  z )  =  ( 0g `  G ) ) ) )
224, 21syl 14 . . . . 5  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  I  =  ( z  e.  B  |->  ( iota_ w  e.  B  ( w 
.+  z )  =  ( 0g `  G
) ) ) )
23 basfn 12809 . . . . . . . 8  |-  Base  Fn  _V
24 funfvex 5587 . . . . . . . . 9  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
2524funfni 5370 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
2623, 4, 25sylancr 414 . . . . . . 7  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( Base `  G
)  e.  _V )
271, 26eqeltrid 2291 . . . . . 6  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  B  e.  _V )
2827mptexd 5801 . . . . 5  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( z  e.  B  |->  ( iota_ w  e.  B  ( w  .+  z )  =  ( 0g `  G ) ) )  e.  _V )
2922, 28eqeltrd 2281 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  I  e.  _V )
30 fvexg 5589 . . . 4  |-  ( ( I  e.  _V  /\  Y  e.  B )  ->  ( I `  Y
)  e.  _V )
3129, 30sylancom 420 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( I `  Y
)  e.  _V )
32 ovexg 5968 . . 3  |-  ( ( X  e.  B  /\  .+  e.  _V  /\  (
I `  Y )  e.  _V )  ->  ( X  .+  ( I `  Y ) )  e. 
_V )
333, 19, 31, 32syl3anc 1249 . 2  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .+  (
I `  Y )
)  e.  _V )
349, 14, 3, 15, 33ovmpod 6063 1  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  =  ( X 
.+  ( I `  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   _Vcvv 2771    |-> cmpt 4104    Fn wfn 5263   ` cfv 5268   iota_crio 5888  (class class class)co 5934    e. cmpo 5936   Basecbs 12751   +g cplusg 12828   0gc0g 13006   invgcminusg 13251   -gcsg 13252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-inn 9019  df-2 9077  df-ndx 12754  df-slot 12755  df-base 12757  df-plusg 12841  df-minusg 13254  df-sbg 13255
This theorem is referenced by:  grpsubinv  13323  grpsubrcan  13331  grpinvsub  13332  grpinvval2  13333  grpsubid  13334  grpsubid1  13335  grpsubeq0  13336  grpsubadd0sub  13337  grpsubadd  13338  grpsubsub  13339  grpaddsubass  13340  grpnpcan  13342  pwssub  13363  mulgsubdir  13416  subgsubcl  13439  subgsub  13440  issubg4m  13447  qussub  13491  ghmsub  13505  ablsub2inv  13565  ablsub4  13567  ablsubsub4  13573  eqgabl  13584  rngsubdi  13631  rngsubdir  13632  ringsubdi  13736  ringsubdir  13737  lmodvsubval2  14022  lmodsubdir  14025  cnfldsub  14255
  Copyright terms: Public domain W3C validator