ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubval Unicode version

Theorem grpsubval 12925
Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
grpsubval.b  |-  B  =  ( Base `  G
)
grpsubval.p  |-  .+  =  ( +g  `  G )
grpsubval.i  |-  I  =  ( invg `  G )
grpsubval.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
grpsubval  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  =  ( X 
.+  ( I `  Y ) ) )

Proof of Theorem grpsubval
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpsubval.b . . . . 5  |-  B  =  ( Base `  G
)
21a1i 9 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  B  =  ( Base `  G ) )
3 simpl 109 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
42, 3basmexd 12525 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  G  e.  _V )
5 grpsubval.p . . . 4  |-  .+  =  ( +g  `  G )
6 grpsubval.i . . . 4  |-  I  =  ( invg `  G )
7 grpsubval.m . . . 4  |-  .-  =  ( -g `  G )
81, 5, 6, 7grpsubfvalg 12924 . . 3  |-  ( G  e.  _V  ->  .-  =  ( x  e.  B ,  y  e.  B  |->  ( x  .+  (
I `  y )
) ) )
94, 8syl 14 . 2  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  .-  =  ( x  e.  B ,  y  e.  B  |->  ( x 
.+  ( I `  y ) ) ) )
10 oveq1 5885 . . . 4  |-  ( x  =  X  ->  (
x  .+  ( I `  y ) )  =  ( X  .+  (
I `  y )
) )
11 fveq2 5517 . . . . 5  |-  ( y  =  Y  ->  (
I `  y )  =  ( I `  Y ) )
1211oveq2d 5894 . . . 4  |-  ( y  =  Y  ->  ( X  .+  ( I `  y ) )  =  ( X  .+  (
I `  Y )
) )
1310, 12sylan9eq 2230 . . 3  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( x  .+  (
I `  y )
)  =  ( X 
.+  ( I `  Y ) ) )
1413adantl 277 . 2  |-  ( ( ( X  e.  B  /\  Y  e.  B
)  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( x  .+  (
I `  y )
)  =  ( X 
.+  ( I `  Y ) ) )
15 simpr 110 . 2  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
16 plusgslid 12574 . . . . . 6  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
1716slotex 12492 . . . . 5  |-  ( G  e.  _V  ->  ( +g  `  G )  e. 
_V )
184, 17syl 14 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( +g  `  G
)  e.  _V )
195, 18eqeltrid 2264 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  .+  e.  _V )
20 eqid 2177 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
211, 5, 20, 6grpinvfvalg 12921 . . . . . 6  |-  ( G  e.  _V  ->  I  =  ( z  e.  B  |->  ( iota_ w  e.  B  ( w  .+  z )  =  ( 0g `  G ) ) ) )
224, 21syl 14 . . . . 5  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  I  =  ( z  e.  B  |->  ( iota_ w  e.  B  ( w 
.+  z )  =  ( 0g `  G
) ) ) )
23 basfn 12523 . . . . . . . 8  |-  Base  Fn  _V
24 funfvex 5534 . . . . . . . . 9  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
2524funfni 5318 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
2623, 4, 25sylancr 414 . . . . . . 7  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( Base `  G
)  e.  _V )
271, 26eqeltrid 2264 . . . . . 6  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  B  e.  _V )
2827mptexd 5746 . . . . 5  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( z  e.  B  |->  ( iota_ w  e.  B  ( w  .+  z )  =  ( 0g `  G ) ) )  e.  _V )
2922, 28eqeltrd 2254 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  I  e.  _V )
30 fvexg 5536 . . . 4  |-  ( ( I  e.  _V  /\  Y  e.  B )  ->  ( I `  Y
)  e.  _V )
3129, 30sylancom 420 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( I `  Y
)  e.  _V )
32 ovexg 5912 . . 3  |-  ( ( X  e.  B  /\  .+  e.  _V  /\  (
I `  Y )  e.  _V )  ->  ( X  .+  ( I `  Y ) )  e. 
_V )
333, 19, 31, 32syl3anc 1238 . 2  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .+  (
I `  Y )
)  e.  _V )
349, 14, 3, 15, 33ovmpod 6005 1  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  =  ( X 
.+  ( I `  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   _Vcvv 2739    |-> cmpt 4066    Fn wfn 5213   ` cfv 5218   iota_crio 5833  (class class class)co 5878    e. cmpo 5880   Basecbs 12465   +g cplusg 12539   0gc0g 12711   invgcminusg 12884   -gcsg 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1re 7908  ax-addrcl 7911
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-inn 8923  df-2 8981  df-ndx 12468  df-slot 12469  df-base 12471  df-plusg 12552  df-minusg 12887  df-sbg 12888
This theorem is referenced by:  grpsubinv  12949  grpsubrcan  12957  grpinvsub  12958  grpinvval2  12959  grpsubid  12960  grpsubid1  12961  grpsubeq0  12962  grpsubadd0sub  12963  grpsubadd  12964  grpsubsub  12965  grpaddsubass  12966  grpnpcan  12968  mulgsubdir  13029  subgsubcl  13051  subgsub  13052  issubg4m  13059  ablsub2inv  13120  ablsub4  13122  ablsubsub4  13128  ringsubdi  13239  ringsubdir  13240  lmodvsubval2  13438  lmodsubdir  13441  cnfldsub  13609
  Copyright terms: Public domain W3C validator