| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpsubval | Unicode version | ||
| Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| grpsubval.b |
|
| grpsubval.p |
|
| grpsubval.i |
|
| grpsubval.m |
|
| Ref | Expression |
|---|---|
| grpsubval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubval.b |
. . . . 5
| |
| 2 | 1 | a1i 9 |
. . . 4
|
| 3 | simpl 109 |
. . . 4
| |
| 4 | 2, 3 | basmexd 12967 |
. . 3
|
| 5 | grpsubval.p |
. . . 4
| |
| 6 | grpsubval.i |
. . . 4
| |
| 7 | grpsubval.m |
. . . 4
| |
| 8 | 1, 5, 6, 7 | grpsubfvalg 13452 |
. . 3
|
| 9 | 4, 8 | syl 14 |
. 2
|
| 10 | oveq1 5964 |
. . . 4
| |
| 11 | fveq2 5589 |
. . . . 5
| |
| 12 | 11 | oveq2d 5973 |
. . . 4
|
| 13 | 10, 12 | sylan9eq 2259 |
. . 3
|
| 14 | 13 | adantl 277 |
. 2
|
| 15 | simpr 110 |
. 2
| |
| 16 | plusgslid 13019 |
. . . . . 6
| |
| 17 | 16 | slotex 12934 |
. . . . 5
|
| 18 | 4, 17 | syl 14 |
. . . 4
|
| 19 | 5, 18 | eqeltrid 2293 |
. . 3
|
| 20 | eqid 2206 |
. . . . . . 7
| |
| 21 | 1, 5, 20, 6 | grpinvfvalg 13449 |
. . . . . 6
|
| 22 | 4, 21 | syl 14 |
. . . . 5
|
| 23 | basfn 12965 |
. . . . . . . 8
| |
| 24 | funfvex 5606 |
. . . . . . . . 9
| |
| 25 | 24 | funfni 5385 |
. . . . . . . 8
|
| 26 | 23, 4, 25 | sylancr 414 |
. . . . . . 7
|
| 27 | 1, 26 | eqeltrid 2293 |
. . . . . 6
|
| 28 | 27 | mptexd 5824 |
. . . . 5
|
| 29 | 22, 28 | eqeltrd 2283 |
. . . 4
|
| 30 | fvexg 5608 |
. . . 4
| |
| 31 | 29, 30 | sylancom 420 |
. . 3
|
| 32 | ovexg 5991 |
. . 3
| |
| 33 | 3, 19, 31, 32 | syl3anc 1250 |
. 2
|
| 34 | 9, 14, 3, 15, 33 | ovmpod 6086 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-inn 9057 df-2 9115 df-ndx 12910 df-slot 12911 df-base 12913 df-plusg 12997 df-minusg 13411 df-sbg 13412 |
| This theorem is referenced by: grpsubinv 13480 grpsubrcan 13488 grpinvsub 13489 grpinvval2 13490 grpsubid 13491 grpsubid1 13492 grpsubeq0 13493 grpsubadd0sub 13494 grpsubadd 13495 grpsubsub 13496 grpaddsubass 13497 grpnpcan 13499 pwssub 13520 mulgsubdir 13573 subgsubcl 13596 subgsub 13597 issubg4m 13604 qussub 13648 ghmsub 13662 ablsub2inv 13722 ablsub4 13724 ablsubsub4 13730 eqgabl 13741 rngsubdi 13788 rngsubdir 13789 ringsubdi 13893 ringsubdir 13894 lmodvsubval2 14179 lmodsubdir 14182 cnfldsub 14412 |
| Copyright terms: Public domain | W3C validator |