| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpsubval | Unicode version | ||
| Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| grpsubval.b |
|
| grpsubval.p |
|
| grpsubval.i |
|
| grpsubval.m |
|
| Ref | Expression |
|---|---|
| grpsubval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubval.b |
. . . . 5
| |
| 2 | 1 | a1i 9 |
. . . 4
|
| 3 | simpl 109 |
. . . 4
| |
| 4 | 2, 3 | basmexd 12811 |
. . 3
|
| 5 | grpsubval.p |
. . . 4
| |
| 6 | grpsubval.i |
. . . 4
| |
| 7 | grpsubval.m |
. . . 4
| |
| 8 | 1, 5, 6, 7 | grpsubfvalg 13295 |
. . 3
|
| 9 | 4, 8 | syl 14 |
. 2
|
| 10 | oveq1 5941 |
. . . 4
| |
| 11 | fveq2 5570 |
. . . . 5
| |
| 12 | 11 | oveq2d 5950 |
. . . 4
|
| 13 | 10, 12 | sylan9eq 2257 |
. . 3
|
| 14 | 13 | adantl 277 |
. 2
|
| 15 | simpr 110 |
. 2
| |
| 16 | plusgslid 12863 |
. . . . . 6
| |
| 17 | 16 | slotex 12778 |
. . . . 5
|
| 18 | 4, 17 | syl 14 |
. . . 4
|
| 19 | 5, 18 | eqeltrid 2291 |
. . 3
|
| 20 | eqid 2204 |
. . . . . . 7
| |
| 21 | 1, 5, 20, 6 | grpinvfvalg 13292 |
. . . . . 6
|
| 22 | 4, 21 | syl 14 |
. . . . 5
|
| 23 | basfn 12809 |
. . . . . . . 8
| |
| 24 | funfvex 5587 |
. . . . . . . . 9
| |
| 25 | 24 | funfni 5370 |
. . . . . . . 8
|
| 26 | 23, 4, 25 | sylancr 414 |
. . . . . . 7
|
| 27 | 1, 26 | eqeltrid 2291 |
. . . . . 6
|
| 28 | 27 | mptexd 5801 |
. . . . 5
|
| 29 | 22, 28 | eqeltrd 2281 |
. . . 4
|
| 30 | fvexg 5589 |
. . . 4
| |
| 31 | 29, 30 | sylancom 420 |
. . 3
|
| 32 | ovexg 5968 |
. . 3
| |
| 33 | 3, 19, 31, 32 | syl3anc 1249 |
. 2
|
| 34 | 9, 14, 3, 15, 33 | ovmpod 6063 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addrcl 8004 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-inn 9019 df-2 9077 df-ndx 12754 df-slot 12755 df-base 12757 df-plusg 12841 df-minusg 13254 df-sbg 13255 |
| This theorem is referenced by: grpsubinv 13323 grpsubrcan 13331 grpinvsub 13332 grpinvval2 13333 grpsubid 13334 grpsubid1 13335 grpsubeq0 13336 grpsubadd0sub 13337 grpsubadd 13338 grpsubsub 13339 grpaddsubass 13340 grpnpcan 13342 pwssub 13363 mulgsubdir 13416 subgsubcl 13439 subgsub 13440 issubg4m 13447 qussub 13491 ghmsub 13505 ablsub2inv 13565 ablsub4 13567 ablsubsub4 13573 eqgabl 13584 rngsubdi 13631 rngsubdir 13632 ringsubdi 13736 ringsubdir 13737 lmodvsubval2 14022 lmodsubdir 14025 cnfldsub 14255 |
| Copyright terms: Public domain | W3C validator |