| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > grpsubval | Unicode version | ||
| Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 13-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| grpsubval.b | 
 | 
| grpsubval.p | 
 | 
| grpsubval.i | 
 | 
| grpsubval.m | 
 | 
| Ref | Expression | 
|---|---|
| grpsubval | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | grpsubval.b | 
. . . . 5
 | |
| 2 | 1 | a1i 9 | 
. . . 4
 | 
| 3 | simpl 109 | 
. . . 4
 | |
| 4 | 2, 3 | basmexd 12738 | 
. . 3
 | 
| 5 | grpsubval.p | 
. . . 4
 | |
| 6 | grpsubval.i | 
. . . 4
 | |
| 7 | grpsubval.m | 
. . . 4
 | |
| 8 | 1, 5, 6, 7 | grpsubfvalg 13177 | 
. . 3
 | 
| 9 | 4, 8 | syl 14 | 
. 2
 | 
| 10 | oveq1 5929 | 
. . . 4
 | |
| 11 | fveq2 5558 | 
. . . . 5
 | |
| 12 | 11 | oveq2d 5938 | 
. . . 4
 | 
| 13 | 10, 12 | sylan9eq 2249 | 
. . 3
 | 
| 14 | 13 | adantl 277 | 
. 2
 | 
| 15 | simpr 110 | 
. 2
 | |
| 16 | plusgslid 12790 | 
. . . . . 6
 | |
| 17 | 16 | slotex 12705 | 
. . . . 5
 | 
| 18 | 4, 17 | syl 14 | 
. . . 4
 | 
| 19 | 5, 18 | eqeltrid 2283 | 
. . 3
 | 
| 20 | eqid 2196 | 
. . . . . . 7
 | |
| 21 | 1, 5, 20, 6 | grpinvfvalg 13174 | 
. . . . . 6
 | 
| 22 | 4, 21 | syl 14 | 
. . . . 5
 | 
| 23 | basfn 12736 | 
. . . . . . . 8
 | |
| 24 | funfvex 5575 | 
. . . . . . . . 9
 | |
| 25 | 24 | funfni 5358 | 
. . . . . . . 8
 | 
| 26 | 23, 4, 25 | sylancr 414 | 
. . . . . . 7
 | 
| 27 | 1, 26 | eqeltrid 2283 | 
. . . . . 6
 | 
| 28 | 27 | mptexd 5789 | 
. . . . 5
 | 
| 29 | 22, 28 | eqeltrd 2273 | 
. . . 4
 | 
| 30 | fvexg 5577 | 
. . . 4
 | |
| 31 | 29, 30 | sylancom 420 | 
. . 3
 | 
| 32 | ovexg 5956 | 
. . 3
 | |
| 33 | 3, 19, 31, 32 | syl3anc 1249 | 
. 2
 | 
| 34 | 9, 14, 3, 15, 33 | ovmpod 6050 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-minusg 13136 df-sbg 13137 | 
| This theorem is referenced by: grpsubinv 13205 grpsubrcan 13213 grpinvsub 13214 grpinvval2 13215 grpsubid 13216 grpsubid1 13217 grpsubeq0 13218 grpsubadd0sub 13219 grpsubadd 13220 grpsubsub 13221 grpaddsubass 13222 grpnpcan 13224 mulgsubdir 13292 subgsubcl 13315 subgsub 13316 issubg4m 13323 qussub 13367 ghmsub 13381 ablsub2inv 13441 ablsub4 13443 ablsubsub4 13449 eqgabl 13460 rngsubdi 13507 rngsubdir 13508 ringsubdi 13612 ringsubdir 13613 lmodvsubval2 13898 lmodsubdir 13901 cnfldsub 14131 | 
| Copyright terms: Public domain | W3C validator |