ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemoffcau Unicode version

Theorem caucvgsrlemoffcau 7893
Description: Lemma for caucvgsr 7897. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
Hypotheses
Ref Expression
caucvgsr.f  |-  ( ph  ->  F : N. --> R. )
caucvgsr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
caucvgsrlembnd.bnd  |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )
caucvgsrlembnd.offset  |-  G  =  ( a  e.  N.  |->  ( ( ( F `
 a )  +R 
1R )  +R  ( A  .R  -1R ) ) )
Assertion
Ref Expression
caucvgsrlemoffcau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( G `  n
)  <R  ( ( G `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k )  <R  (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
Distinct variable groups:    A, a    A, m    F, a    k, a, n, ph    n, l, u
Allowed substitution hints:    ph( u, m, l)    A( u, k, n, l)    F( u, k, m, n, l)    G( u, k, m, n, a, l)

Proof of Theorem caucvgsrlemoffcau
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgsr.cau . 2  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
2 caucvgsr.f . . . . . . . . . . . 12  |-  ( ph  ->  F : N. --> R. )
3 caucvgsrlembnd.bnd . . . . . . . . . . . 12  |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )
4 caucvgsrlembnd.offset . . . . . . . . . . . 12  |-  G  =  ( a  e.  N.  |->  ( ( ( F `
 a )  +R 
1R )  +R  ( A  .R  -1R ) ) )
52, 1, 3, 4caucvgsrlemoffval 7891 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  N. )  ->  ( ( G `  n )  +R  A )  =  ( ( F `  n )  +R  1R ) )
65adantr 276 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( G `  n
)  +R  A )  =  ( ( F `
 n )  +R 
1R ) )
76eqcomd 2210 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( F `  n
)  +R  1R )  =  ( ( G `
 n )  +R  A ) )
82ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  F : N. --> R. )
9 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  k  e.  N. )
108, 9ffvelcdmd 5710 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  ( F `  k )  e.  R. )
11 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  n  e.  N. )
12 recnnpr 7643 . . . . . . . . . . . 12  |-  ( n  e.  N.  ->  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P. )
13 prsrcl 7879 . . . . . . . . . . . 12  |-  ( <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P.  ->  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
1411, 12, 133syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
15 1sr 7846 . . . . . . . . . . . 12  |-  1R  e.  R.
1615a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  1R  e.  R. )
17 addcomsrg 7850 . . . . . . . . . . . 12  |-  ( ( f  e.  R.  /\  g  e.  R. )  ->  ( f  +R  g
)  =  ( g  +R  f ) )
1817adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  ( f  e. 
R.  /\  g  e.  R. ) )  ->  (
f  +R  g )  =  ( g  +R  f ) )
19 addasssrg 7851 . . . . . . . . . . . 12  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
( f  +R  g
)  +R  h )  =  ( f  +R  ( g  +R  h
) ) )
2019adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  ( f  e. 
R.  /\  g  e.  R.  /\  h  e.  R. ) )  ->  (
( f  +R  g
)  +R  h )  =  ( f  +R  ( g  +R  h
) ) )
2110, 14, 16, 18, 20caov32d 6117 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( ( F `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  +R  1R )  =  ( ( ( F `  k )  +R  1R )  +R  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
222, 1, 3, 4caucvgsrlemoffval 7891 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  N. )  ->  ( ( G `  k )  +R  A )  =  ( ( F `  k )  +R  1R ) )
2322adantlr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( G `  k
)  +R  A )  =  ( ( F `
 k )  +R 
1R ) )
2423oveq1d 5949 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( ( G `  k )  +R  A
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  =  ( (
( F `  k
)  +R  1R )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
252, 1, 3, 4caucvgsrlemofff 7892 . . . . . . . . . . . . 13  |-  ( ph  ->  G : N. --> R. )
2625ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  G : N. --> R. )
2726, 9ffvelcdmd 5710 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  ( G `  k )  e.  R. )
283caucvgsrlemasr 7885 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  R. )
2928ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  A  e.  R. )
3027, 29, 14, 18, 20caov32d 6117 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( ( G `  k )  +R  A
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  =  ( (
( G `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  +R  A ) )
3121, 24, 303eqtr2d 2243 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( ( F `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  +R  1R )  =  ( ( ( G `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  +R  A ) )
327, 31breq12d 4056 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( ( F `  n )  +R  1R )  <R  ( ( ( F `  k )  +R  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  +R  1R )  <->  ( ( G `  n )  +R  A )  <R  (
( ( G `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  +R  A ) ) )
33 ltasrg 7865 . . . . . . . . . 10  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
f  <R  g  <->  ( h  +R  f )  <R  (
h  +R  g ) ) )
3433adantl 277 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  ( f  e. 
R.  /\  g  e.  R.  /\  h  e.  R. ) )  ->  (
f  <R  g  <->  ( h  +R  f )  <R  (
h  +R  g ) ) )
358, 11ffvelcdmd 5710 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  ( F `  n )  e.  R. )
36 addclsr 7848 . . . . . . . . . 10  |-  ( ( ( F `  k
)  e.  R.  /\  [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )  ->  ( ( F `  k )  +R  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  e.  R. )
3710, 14, 36syl2anc 411 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( F `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  e.  R. )
3834, 35, 37, 16, 18caovord2d 6106 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) 
<->  ( ( F `  n )  +R  1R )  <R  ( ( ( F `  k )  +R  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  +R  1R ) ) )
3926, 11ffvelcdmd 5710 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  ( G `  n )  e.  R. )
40 addclsr 7848 . . . . . . . . . 10  |-  ( ( ( G `  k
)  e.  R.  /\  [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )  ->  ( ( G `  k )  +R  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  e.  R. )
4127, 14, 40syl2anc 411 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( G `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  e.  R. )
4234, 39, 41, 29, 18caovord2d 6106 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( G `  n
)  <R  ( ( G `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) 
<->  ( ( G `  n )  +R  A
)  <R  ( ( ( G `  k )  +R  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  +R  A ) ) )
4332, 38, 423bitr4d 220 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) 
<->  ( G `  n
)  <R  ( ( G `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )
4423eqcomd 2210 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( F `  k
)  +R  1R )  =  ( ( G `
 k )  +R  A ) )
4535, 14, 16, 18, 20caov32d 6117 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  +R  1R )  =  ( ( ( F `  n )  +R  1R )  +R  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
466oveq1d 5949 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( ( G `  n )  +R  A
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  =  ( (
( F `  n
)  +R  1R )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
4739, 29, 14, 18, 20caov32d 6117 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( ( G `  n )  +R  A
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  =  ( (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  +R  A ) )
4845, 46, 473eqtr2d 2243 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  +R  1R )  =  ( ( ( G `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  +R  A ) )
4944, 48breq12d 4056 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( ( F `  k )  +R  1R )  <R  ( ( ( F `  n )  +R  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  +R  1R )  <->  ( ( G `  k )  +R  A )  <R  (
( ( G `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  +R  A ) ) )
50 addclsr 7848 . . . . . . . . . 10  |-  ( ( ( F `  n
)  e.  R.  /\  [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )  ->  ( ( F `  n )  +R  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  e.  R. )
5135, 14, 50syl2anc 411 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  e.  R. )
5234, 10, 51, 16, 18caovord2d 6106 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( F `  k
)  <R  ( ( F `
 n )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) 
<->  ( ( F `  k )  +R  1R )  <R  ( ( ( F `  n )  +R  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  +R  1R ) ) )
53 addclsr 7848 . . . . . . . . . 10  |-  ( ( ( G `  n
)  e.  R.  /\  [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )  ->  ( ( G `  n )  +R  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  e.  R. )
5439, 14, 53syl2anc 411 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  e.  R. )
5534, 27, 54, 29, 18caovord2d 6106 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( G `  k
)  <R  ( ( G `
 n )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) 
<->  ( ( G `  k )  +R  A
)  <R  ( ( ( G `  n )  +R  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  +R  A ) ) )
5649, 52, 553bitr4d 220 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( F `  k
)  <R  ( ( F `
 n )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) 
<->  ( G `  k
)  <R  ( ( G `
 n )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )
5743, 56anbi12d 473 . . . . . 6  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( ( F `  n )  <R  (
( F `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )  <->  ( ( G `  n )  <R  ( ( G `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k
)  <R  ( ( G `
 n )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
5857biimpd 144 . . . . 5  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( ( F `  n )  <R  (
( F `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )  ->  (
( G `  n
)  <R  ( ( G `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k )  <R  (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
5958imim2d 54 . . . 4  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
( n  <N  k  ->  ( ( F `  n )  <R  (
( F `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )  -> 
( n  <N  k  ->  ( ( G `  n )  <R  (
( G `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k )  <R  (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) ) )
6059ralimdva 2572 . . 3  |-  ( (
ph  /\  n  e.  N. )  ->  ( A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )  ->  A. k  e.  N.  ( n  <N  k  -> 
( ( G `  n )  <R  (
( G `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k )  <R  (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) ) )
6160ralimdva 2572 . 2  |-  ( ph  ->  ( A. n  e. 
N.  A. k  e.  N.  ( n  <N  k  -> 
( ( F `  n )  <R  (
( F `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( G `  n
)  <R  ( ( G `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k )  <R  (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) ) )
621, 61mpd 13 1  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( G `  n
)  <R  ( ( G `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k )  <R  (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1372    e. wcel 2175   {cab 2190   A.wral 2483   <.cop 3635   class class class wbr 4043    |-> cmpt 4104   -->wf 5264   ` cfv 5268  (class class class)co 5934   1oc1o 6485   [cec 6608   N.cnpi 7367    <N clti 7370    ~Q ceq 7374   *Qcrq 7379    <Q cltq 7380   P.cnp 7386   1Pc1p 7387    +P. cpp 7388    ~R cer 7391   R.cnr 7392   1Rc1r 7394   -1Rcm1r 7395    +R cplr 7396    .R cmr 7397    <R cltr 7398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4334  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-1o 6492  df-2o 6493  df-oadd 6496  df-omul 6497  df-er 6610  df-ec 6612  df-qs 6616  df-ni 7399  df-pli 7400  df-mi 7401  df-lti 7402  df-plpq 7439  df-mpq 7440  df-enq 7442  df-nqqs 7443  df-plqqs 7444  df-mqqs 7445  df-1nqqs 7446  df-rq 7447  df-ltnqqs 7448  df-enq0 7519  df-nq0 7520  df-0nq0 7521  df-plq0 7522  df-mq0 7523  df-inp 7561  df-i1p 7562  df-iplp 7563  df-imp 7564  df-iltp 7565  df-enr 7821  df-nr 7822  df-plr 7823  df-mr 7824  df-ltr 7825  df-0r 7826  df-1r 7827  df-m1r 7828
This theorem is referenced by:  caucvgsrlemoffres  7895
  Copyright terms: Public domain W3C validator