Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eluzelz | Unicode version |
Description: A member of an upper set of integers is an integer. (Contributed by NM, 6-Sep-2005.) |
Ref | Expression |
---|---|
eluzelz |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 9439 | . 2 | |
2 | 1 | simp2bi 998 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2128 class class class wbr 3965 cfv 5169 cle 7907 cz 9161 cuz 9433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-cnex 7817 ax-resscn 7818 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-fv 5177 df-ov 5824 df-neg 8043 df-z 9162 df-uz 9434 |
This theorem is referenced by: eluzelre 9443 uztrn 9449 uzneg 9451 uzssz 9452 uzss 9453 eluzp1l 9457 eluzaddi 9459 eluzsubi 9460 eluzadd 9461 eluzsub 9462 uzm1 9463 uzin 9465 uzind4 9493 uz2mulcl 9512 elfz5 9913 elfzel2 9919 elfzelz 9921 eluzfz2 9927 peano2fzr 9932 fzsplit2 9945 fzopth 9956 fzsuc 9964 elfzp1 9967 fzdifsuc 9976 uzsplit 9987 uzdisj 9988 fzm1 9995 fzneuz 9996 uznfz 9998 nn0disj 10030 elfzo3 10055 fzoss2 10064 fzouzsplit 10071 eluzgtdifelfzo 10089 fzosplitsnm1 10101 fzofzp1b 10120 elfzonelfzo 10122 fzosplitsn 10125 fzisfzounsn 10128 mulp1mod1 10257 m1modge3gt1 10263 frec2uzltd 10295 frecfzen2 10319 uzennn 10328 uzsinds 10334 seq3fveq2 10361 seq3feq2 10362 seq3shft2 10365 monoord 10368 monoord2 10369 ser3mono 10370 seq3split 10371 iseqf1olemjpcl 10387 iseqf1olemqpcl 10388 seq3f1olemqsumk 10391 seq3f1olemp 10394 seq3f1oleml 10395 seq3f1o 10396 seq3id 10400 seq3z 10403 fser0const 10408 leexp2a 10465 expnlbnd2 10536 hashfz 10688 hashfzo 10689 hashfzp1 10691 seq3coll 10706 seq3shft 10731 rexuz3 10883 r19.2uz 10886 cau4 11009 caubnd2 11010 clim 11171 climshft2 11196 climaddc1 11219 climmulc2 11221 climsubc1 11222 climsubc2 11223 clim2ser 11227 clim2ser2 11228 iserex 11229 climlec2 11231 climub 11234 climcau 11237 climcaucn 11241 serf0 11242 sumrbdclem 11267 fsum3cvg 11268 summodclem2a 11271 zsumdc 11274 fsum3 11277 fisumss 11282 fsum3cvg2 11284 fsum3ser 11287 fsumcl2lem 11288 fsumadd 11296 fsumm1 11306 fzosump1 11307 fsum1p 11308 fsump1 11310 fsummulc2 11338 telfsumo 11356 fsumparts 11360 iserabs 11365 binomlem 11373 isumshft 11380 isumsplit 11381 isumrpcl 11384 divcnv 11387 trireciplem 11390 geosergap 11396 geolim2 11402 cvgratnnlemseq 11416 cvgratnnlemabsle 11417 cvgratnnlemsumlt 11418 cvgratnnlemrate 11420 cvgratz 11422 cvgratgt0 11423 mertenslemi1 11425 clim2divap 11430 prodrbdclem 11461 fproddccvg 11462 prodmodclem3 11465 prodmodclem2a 11466 zproddc 11469 fprodntrivap 11474 fprodssdc 11480 fprodm1 11488 fprod1p 11489 fprodp1 11490 fprodabs 11506 fprodeq0 11507 efgt1p2 11585 zsupcllemstep 11824 infssuzex 11828 dvdsbnd 11831 ncoprmgcdne1b 11957 isprm3 11986 prmind2 11988 nprm 11991 dvdsprm 12004 exprmfct 12005 phibndlem 12079 phibnd 12080 dfphi2 12083 hashdvds 12084 relogbval 13239 relogbzcl 13240 nnlogbexp 13247 logblt 13250 logbgcd1irr 13255 supfz 13610 |
Copyright terms: Public domain | W3C validator |