![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eluzelz | Unicode version |
Description: A member of an upper set of integers is an integer. (Contributed by NM, 6-Sep-2005.) |
Ref | Expression |
---|---|
eluzelz |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 9023 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simp2bi 959 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-cnex 7434 ax-resscn 7435 |
This theorem depends on definitions: df-bi 115 df-3or 925 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-rab 2368 df-v 2621 df-sbc 2841 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-mpt 3901 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-fv 5023 df-ov 5655 df-neg 7654 df-z 8749 df-uz 9018 |
This theorem is referenced by: eluzelre 9027 uztrn 9033 uzneg 9035 uzssz 9036 uzss 9037 eluzp1l 9041 eluzaddi 9043 eluzsubi 9044 eluzadd 9045 eluzsub 9046 uzm1 9047 uzin 9049 uzind4 9074 uz2mulcl 9093 elfz5 9430 elfzel2 9436 elfzelz 9438 eluzfz2 9444 peano2fzr 9449 fzsplit2 9462 fzopth 9472 fzsuc 9479 elfzp1 9482 fzdifsuc 9491 uzsplit 9502 uzdisj 9503 fzm1 9510 fzneuz 9511 uznfz 9513 nn0disj 9545 elfzo3 9570 fzoss2 9579 fzouzsplit 9586 eluzgtdifelfzo 9604 fzosplitsnm1 9616 fzofzp1b 9635 elfzonelfzo 9637 fzosplitsn 9640 fzisfzounsn 9643 mulp1mod1 9768 m1modge3gt1 9774 frec2uzltd 9806 frecfzen2 9830 uzsinds 9844 iseqfveq2 9886 iseqfeq2 9887 seq3fveq2 9888 seq3feq2 9889 iseqshft2 9894 monoord 9900 monoord2 9901 isermono 9902 seq3split 9903 iseqsplit 9904 iseqf1olemjpcl 9920 iseqf1olemqpcl 9921 seq3f1olemqsumk 9924 seq3f1olemp 9927 seq3f1oleml 9928 seq3f1o 9929 iseqid 9935 iseqz 9939 fser0const 9947 leexp2a 10004 expnlbnd2 10075 hashfz 10225 hashfzo 10226 hashfzp1 10228 iseqcoll 10243 seq3shft 10268 rexuz3 10419 r19.2uz 10422 cau4 10545 caubnd2 10546 clim 10665 climshft2 10691 climaddc1 10713 climmulc2 10715 climsubc1 10716 climsubc2 10717 clim2ser 10721 clim2ser2 10722 iserex 10723 climlec2 10726 climub 10729 climcau 10732 climcaucn 10736 serf0 10737 isumrblem 10761 fisumcvg 10762 fsum3cvg 10763 isummolem2a 10767 zisum 10770 fisum 10774 fsum3 10775 fisumss 10780 fisumcvg2 10782 fsum3cvg2 10783 fisumser 10786 fsumcl2lem 10788 fsumadd 10796 fsumm1 10806 fzosump1 10807 fsum1p 10808 fsump1 10810 fsummulc2 10838 telfsumo 10856 fsumparts 10860 iserabs 10865 binomlem 10873 isumshft 10880 isumsplit 10881 isumrpcl 10884 divcnv 10887 trireciplem 10890 geosergap 10896 geolim2 10902 cvgratnnlemseq 10916 cvgratnnlemabsle 10917 cvgratnnlemsumlt 10918 cvgratnnlemrate 10920 cvgratz 10922 cvgratgt0 10923 mertenslemi1 10925 efgt1p2 10981 zsupcllemstep 11215 infssuzex 11219 dvdsbnd 11222 ncoprmgcdne1b 11345 isprm3 11374 prmind2 11376 nprm 11379 dvdsprm 11392 exprmfct 11393 phibndlem 11466 phibnd 11467 dfphi2 11470 hashdvds 11471 supfz 11871 |
Copyright terms: Public domain | W3C validator |