Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eluzelz | Unicode version |
Description: A member of an upper set of integers is an integer. (Contributed by NM, 6-Sep-2005.) |
Ref | Expression |
---|---|
eluzelz |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 9493 | . 2 | |
2 | 1 | simp2bi 1008 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 class class class wbr 3989 cfv 5198 cle 7955 cz 9212 cuz 9487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-neg 8093 df-z 9213 df-uz 9488 |
This theorem is referenced by: eluzelre 9497 uztrn 9503 uzneg 9505 uzssz 9506 uzss 9507 eluzp1l 9511 eluzaddi 9513 eluzsubi 9514 eluzadd 9515 eluzsub 9516 uzm1 9517 uzin 9519 uzind4 9547 uz2mulcl 9567 elfz5 9973 elfzel2 9979 elfzelz 9981 eluzfz2 9988 peano2fzr 9993 fzsplit2 10006 fzopth 10017 fzsuc 10025 elfzp1 10028 fzdifsuc 10037 uzsplit 10048 uzdisj 10049 fzm1 10056 fzneuz 10057 uznfz 10059 nn0disj 10094 elfzo3 10119 fzoss2 10128 fzouzsplit 10135 eluzgtdifelfzo 10153 fzosplitsnm1 10165 fzofzp1b 10184 elfzonelfzo 10186 fzosplitsn 10189 fzisfzounsn 10192 mulp1mod1 10321 m1modge3gt1 10327 frec2uzltd 10359 frecfzen2 10383 uzennn 10392 uzsinds 10398 seq3fveq2 10425 seq3feq2 10426 seq3shft2 10429 monoord 10432 monoord2 10433 ser3mono 10434 seq3split 10435 iseqf1olemjpcl 10451 iseqf1olemqpcl 10452 seq3f1olemqsumk 10455 seq3f1olemp 10458 seq3f1oleml 10459 seq3f1o 10460 seq3id 10464 seq3z 10467 fser0const 10472 leexp2a 10529 expnlbnd2 10601 hashfz 10756 hashfzo 10757 hashfzp1 10759 seq3coll 10777 seq3shft 10802 rexuz3 10954 r19.2uz 10957 cau4 11080 caubnd2 11081 clim 11244 climshft2 11269 climaddc1 11292 climmulc2 11294 climsubc1 11295 climsubc2 11296 clim2ser 11300 clim2ser2 11301 iserex 11302 climlec2 11304 climub 11307 climcau 11310 climcaucn 11314 serf0 11315 sumrbdclem 11340 fsum3cvg 11341 summodclem2a 11344 zsumdc 11347 fsum3 11350 fisumss 11355 fsum3cvg2 11357 fsum3ser 11360 fsumcl2lem 11361 fsumadd 11369 fsumm1 11379 fzosump1 11380 fsum1p 11381 fsump1 11383 fsummulc2 11411 telfsumo 11429 fsumparts 11433 iserabs 11438 binomlem 11446 isumshft 11453 isumsplit 11454 isumrpcl 11457 divcnv 11460 trireciplem 11463 geosergap 11469 geolim2 11475 cvgratnnlemseq 11489 cvgratnnlemabsle 11490 cvgratnnlemsumlt 11491 cvgratnnlemrate 11493 cvgratz 11495 cvgratgt0 11496 mertenslemi1 11498 clim2divap 11503 prodrbdclem 11534 fproddccvg 11535 prodmodclem3 11538 prodmodclem2a 11539 zproddc 11542 fprodntrivap 11547 fprodssdc 11553 fprodm1 11561 fprod1p 11562 fprodp1 11563 fprodabs 11579 fprodeq0 11580 efgt1p2 11658 modm1div 11762 zsupcllemstep 11900 infssuzex 11904 suprzubdc 11907 dvdsbnd 11911 uzwodc 11992 ncoprmgcdne1b 12043 isprm3 12072 prmind2 12074 nprm 12077 dvdsprm 12091 exprmfct 12092 isprm5lem 12095 isprm5 12096 phibndlem 12170 phibnd 12171 dfphi2 12174 hashdvds 12175 pclemdc 12242 pcaddlem 12292 pcmptdvds 12297 pcfac 12302 expnprm 12305 relogbval 13663 relogbzcl 13664 nnlogbexp 13671 logblt 13674 logbgcd1irr 13679 lgsne0 13733 2sqlem6 13750 2sqlem8a 13752 2sqlem8 13753 supfz 14100 |
Copyright terms: Public domain | W3C validator |