Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > clim2 | Unicode version |
Description: Express the predicate: The limit of complex number sequence is , or converges to , with more general quantifier restrictions than clim 11190. (Contributed by NM, 6-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
clim2.1 | |
clim2.2 | |
clim2.3 | |
clim2.4 |
Ref | Expression |
---|---|
clim2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clim2.3 | . . 3 | |
2 | eqidd 2158 | . . 3 | |
3 | 1, 2 | clim 11190 | . 2 |
4 | clim2.1 | . . . . . . . . . 10 | |
5 | 4 | uztrn2 9462 | . . . . . . . . 9 |
6 | clim2.4 | . . . . . . . . . . 11 | |
7 | 6 | eleq1d 2226 | . . . . . . . . . 10 |
8 | 6 | oveq1d 5842 | . . . . . . . . . . . 12 |
9 | 8 | fveq2d 5475 | . . . . . . . . . . 11 |
10 | 9 | breq1d 3977 | . . . . . . . . . 10 |
11 | 7, 10 | anbi12d 465 | . . . . . . . . 9 |
12 | 5, 11 | sylan2 284 | . . . . . . . 8 |
13 | 12 | anassrs 398 | . . . . . . 7 |
14 | 13 | ralbidva 2453 | . . . . . 6 |
15 | 14 | rexbidva 2454 | . . . . 5 |
16 | clim2.2 | . . . . . 6 | |
17 | 4 | rexuz3 10902 | . . . . . 6 |
18 | 16, 17 | syl 14 | . . . . 5 |
19 | 15, 18 | bitr3d 189 | . . . 4 |
20 | 19 | ralbidv 2457 | . . 3 |
21 | 20 | anbi2d 460 | . 2 |
22 | 3, 21 | bitr4d 190 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 wral 2435 wrex 2436 class class class wbr 3967 cfv 5173 (class class class)co 5827 cc 7733 clt 7915 cmin 8051 cz 9173 cuz 9445 crp 9567 cabs 10909 cli 11187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4085 ax-pow 4138 ax-pr 4172 ax-un 4396 ax-setind 4499 ax-cnex 7826 ax-resscn 7827 ax-1cn 7828 ax-1re 7829 ax-icn 7830 ax-addcl 7831 ax-addrcl 7832 ax-mulcl 7833 ax-addcom 7835 ax-addass 7837 ax-distr 7839 ax-i2m1 7840 ax-0lt1 7841 ax-0id 7843 ax-rnegex 7844 ax-cnre 7846 ax-pre-ltirr 7847 ax-pre-ltwlin 7848 ax-pre-lttrn 7849 ax-pre-apti 7850 ax-pre-ltadd 7851 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-if 3507 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-int 3810 df-br 3968 df-opab 4029 df-mpt 4030 df-id 4256 df-xp 4595 df-rel 4596 df-cnv 4597 df-co 4598 df-dm 4599 df-rn 4600 df-res 4601 df-ima 4602 df-iota 5138 df-fun 5175 df-fn 5176 df-f 5177 df-fv 5181 df-riota 5783 df-ov 5830 df-oprab 5831 df-mpo 5832 df-pnf 7917 df-mnf 7918 df-xr 7919 df-ltxr 7920 df-le 7921 df-sub 8053 df-neg 8054 df-inn 8840 df-n0 9097 df-z 9174 df-uz 9446 df-clim 11188 |
This theorem is referenced by: clim2c 11193 clim0 11194 climi 11196 climeq 11208 |
Copyright terms: Public domain | W3C validator |