ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim2 Unicode version

Theorem clim2 11192
Description: Express the predicate: The limit of complex number sequence  F is  A, or  F converges to  A, with more general quantifier restrictions than clim 11190. (Contributed by NM, 6-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
clim2.1  |-  Z  =  ( ZZ>= `  M )
clim2.2  |-  ( ph  ->  M  e.  ZZ )
clim2.3  |-  ( ph  ->  F  e.  V )
clim2.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
Assertion
Ref Expression
clim2  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) ) )
Distinct variable groups:    j, k, x, A    j, F, k, x    j, M    ph, j,
k, x    j, Z, k
Allowed substitution hints:    B( x, j, k)    M( x, k)    V( x, j, k)    Z( x)

Proof of Theorem clim2
StepHypRef Expression
1 clim2.3 . . 3  |-  ( ph  ->  F  e.  V )
2 eqidd 2158 . . 3  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( F `
 k )  =  ( F `  k
) )
31, 2clim 11190 . 2  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) ) )
4 clim2.1 . . . . . . . . . 10  |-  Z  =  ( ZZ>= `  M )
54uztrn2 9462 . . . . . . . . 9  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
6 clim2.4 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
76eleq1d 2226 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  e.  CC  <->  B  e.  CC ) )
86oveq1d 5842 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F `  k
)  -  A )  =  ( B  -  A ) )
98fveq2d 5475 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( ( F `
 k )  -  A ) )  =  ( abs `  ( B  -  A )
) )
109breq1d 3977 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  (
( abs `  (
( F `  k
)  -  A ) )  <  x  <->  ( abs `  ( B  -  A
) )  <  x
) )
117, 10anbi12d 465 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x )  <-> 
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) )
125, 11sylan2 284 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x )  <-> 
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) )
1312anassrs 398 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  x )  <->  ( B  e.  CC  /\  ( abs `  ( B  -  A
) )  <  x
) ) )
1413ralbidva 2453 . . . . . 6  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  x )  <->  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) )
1514rexbidva 2454 . . . . 5  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x )  <->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  x ) ) )
16 clim2.2 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
174rexuz3 10902 . . . . . 6  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) )
1816, 17syl 14 . . . . 5  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
x ) ) )
1915, 18bitr3d 189 . . . 4  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
x ) ) )
2019ralbidv 2457 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) )
2120anbi2d 460 . 2  |-  ( ph  ->  ( ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
)  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) ) )
223, 21bitr4d 190 1  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   A.wral 2435   E.wrex 2436   class class class wbr 3967   ` cfv 5173  (class class class)co 5827   CCcc 7733    < clt 7915    - cmin 8051   ZZcz 9173   ZZ>=cuz 9445   RR+crp 9567   abscabs 10909    ~~> cli 11187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4085  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-addcom 7835  ax-addass 7837  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-0id 7843  ax-rnegex 7844  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-br 3968  df-opab 4029  df-mpt 4030  df-id 4256  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-fv 5181  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-inn 8840  df-n0 9097  df-z 9174  df-uz 9446  df-clim 11188
This theorem is referenced by:  clim2c  11193  clim0  11194  climi  11196  climeq  11208
  Copyright terms: Public domain W3C validator