ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindeulemloc GIF version

Theorem dedekindeulemloc 12766
Description: Lemma for dedekindeu 12770. The set L is located. (Contributed by Jim Kingdon, 31-Jan-2024.)
Hypotheses
Ref Expression
dedekindeu.lss (𝜑𝐿 ⊆ ℝ)
dedekindeu.uss (𝜑𝑈 ⊆ ℝ)
dedekindeu.lm (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)
dedekindeu.um (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)
dedekindeu.lr (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
dedekindeu.ur (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
dedekindeu.disj (𝜑 → (𝐿𝑈) = ∅)
dedekindeu.loc (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
Assertion
Ref Expression
dedekindeulemloc (𝜑 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐿 𝑥 < 𝑧 ∨ ∀𝑧𝐿 𝑧 < 𝑦)))
Distinct variable groups:   𝐿,𝑞,𝑟,𝑧   𝑈,𝑞,𝑟,𝑧   𝜑,𝑞,𝑥,𝑦,𝑧   𝑥,𝑟,𝑦
Allowed substitution hints:   𝜑(𝑟)   𝑈(𝑥,𝑦)   𝐿(𝑥,𝑦)

Proof of Theorem dedekindeulemloc
StepHypRef Expression
1 breq2 3933 . . . . 5 (𝑟 = 𝑦 → (𝑥 < 𝑟𝑥 < 𝑦))
2 eleq1w 2200 . . . . . 6 (𝑟 = 𝑦 → (𝑟𝑈𝑦𝑈))
32orbi2d 779 . . . . 5 (𝑟 = 𝑦 → ((𝑥𝐿𝑟𝑈) ↔ (𝑥𝐿𝑦𝑈)))
41, 3imbi12d 233 . . . 4 (𝑟 = 𝑦 → ((𝑥 < 𝑟 → (𝑥𝐿𝑟𝑈)) ↔ (𝑥 < 𝑦 → (𝑥𝐿𝑦𝑈))))
5 breq1 3932 . . . . . . 7 (𝑞 = 𝑥 → (𝑞 < 𝑟𝑥 < 𝑟))
6 eleq1w 2200 . . . . . . . 8 (𝑞 = 𝑥 → (𝑞𝐿𝑥𝐿))
76orbi1d 780 . . . . . . 7 (𝑞 = 𝑥 → ((𝑞𝐿𝑟𝑈) ↔ (𝑥𝐿𝑟𝑈)))
85, 7imbi12d 233 . . . . . 6 (𝑞 = 𝑥 → ((𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)) ↔ (𝑥 < 𝑟 → (𝑥𝐿𝑟𝑈))))
98ralbidv 2437 . . . . 5 (𝑞 = 𝑥 → (∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)) ↔ ∀𝑟 ∈ ℝ (𝑥 < 𝑟 → (𝑥𝐿𝑟𝑈))))
10 dedekindeu.loc . . . . . 6 (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
1110adantr 274 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
12 simprl 520 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
139, 11, 12rspcdva 2794 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑟 ∈ ℝ (𝑥 < 𝑟 → (𝑥𝐿𝑟𝑈)))
14 simprr 521 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
154, 13, 14rspcdva 2794 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 < 𝑦 → (𝑥𝐿𝑦𝑈)))
16 simpr 109 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑥𝐿) → 𝑥𝐿)
175rexbidv 2438 . . . . . . . . 9 (𝑞 = 𝑥 → (∃𝑟𝐿 𝑞 < 𝑟 ↔ ∃𝑟𝐿 𝑥 < 𝑟))
186, 17bibi12d 234 . . . . . . . 8 (𝑞 = 𝑥 → ((𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟) ↔ (𝑥𝐿 ↔ ∃𝑟𝐿 𝑥 < 𝑟)))
19 dedekindeu.lr . . . . . . . . 9 (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
2019ad2antrr 479 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑥𝐿) → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
2112adantr 274 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑥𝐿) → 𝑥 ∈ ℝ)
2218, 20, 21rspcdva 2794 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑥𝐿) → (𝑥𝐿 ↔ ∃𝑟𝐿 𝑥 < 𝑟))
2316, 22mpbid 146 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑥𝐿) → ∃𝑟𝐿 𝑥 < 𝑟)
24 breq2 3933 . . . . . . 7 (𝑟 = 𝑧 → (𝑥 < 𝑟𝑥 < 𝑧))
2524cbvrexv 2655 . . . . . 6 (∃𝑟𝐿 𝑥 < 𝑟 ↔ ∃𝑧𝐿 𝑥 < 𝑧)
2623, 25sylib 121 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑥𝐿) → ∃𝑧𝐿 𝑥 < 𝑧)
2726ex 114 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝐿 → ∃𝑧𝐿 𝑥 < 𝑧))
28 dedekindeu.lss . . . . . . 7 (𝜑𝐿 ⊆ ℝ)
2928ad2antrr 479 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦𝑈) → 𝐿 ⊆ ℝ)
30 dedekindeu.uss . . . . . . 7 (𝜑𝑈 ⊆ ℝ)
3130ad2antrr 479 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦𝑈) → 𝑈 ⊆ ℝ)
32 dedekindeu.lm . . . . . . 7 (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)
3332ad2antrr 479 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦𝑈) → ∃𝑞 ∈ ℝ 𝑞𝐿)
34 dedekindeu.um . . . . . . 7 (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)
3534ad2antrr 479 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦𝑈) → ∃𝑟 ∈ ℝ 𝑟𝑈)
3619ad2antrr 479 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦𝑈) → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
37 dedekindeu.ur . . . . . . 7 (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
3837ad2antrr 479 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦𝑈) → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
39 dedekindeu.disj . . . . . . 7 (𝜑 → (𝐿𝑈) = ∅)
4039ad2antrr 479 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦𝑈) → (𝐿𝑈) = ∅)
4110ad2antrr 479 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦𝑈) → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
42 simpr 109 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦𝑈) → 𝑦𝑈)
4329, 31, 33, 35, 36, 38, 40, 41, 42dedekindeulemuub 12764 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦𝑈) → ∀𝑧𝐿 𝑧 < 𝑦)
4443ex 114 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑦𝑈 → ∀𝑧𝐿 𝑧 < 𝑦))
4527, 44orim12d 775 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝐿𝑦𝑈) → (∃𝑧𝐿 𝑥 < 𝑧 ∨ ∀𝑧𝐿 𝑧 < 𝑦)))
4615, 45syld 45 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 < 𝑦 → (∃𝑧𝐿 𝑥 < 𝑧 ∨ ∀𝑧𝐿 𝑧 < 𝑦)))
4746ralrimivva 2514 1 (𝜑 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐿 𝑥 < 𝑧 ∨ ∀𝑧𝐿 𝑧 < 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697   = wceq 1331  wcel 1480  wral 2416  wrex 2417  cin 3070  wss 3071  c0 3363   class class class wbr 3929  cr 7619   < clt 7800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-pre-ltwlin 7733
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-xp 4545  df-cnv 4547  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806
This theorem is referenced by:  dedekindeulemlub  12767
  Copyright terms: Public domain W3C validator