Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindeulemloc GIF version

Theorem dedekindeulemloc 12944
 Description: Lemma for dedekindeu 12948. The set L is located. (Contributed by Jim Kingdon, 31-Jan-2024.)
Hypotheses
Ref Expression
dedekindeu.lss (𝜑𝐿 ⊆ ℝ)
dedekindeu.uss (𝜑𝑈 ⊆ ℝ)
dedekindeu.lm (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)
dedekindeu.um (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)
dedekindeu.lr (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
dedekindeu.ur (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
dedekindeu.disj (𝜑 → (𝐿𝑈) = ∅)
dedekindeu.loc (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
Assertion
Ref Expression
dedekindeulemloc (𝜑 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐿 𝑥 < 𝑧 ∨ ∀𝑧𝐿 𝑧 < 𝑦)))
Distinct variable groups:   𝐿,𝑞,𝑟,𝑧   𝑈,𝑞,𝑟,𝑧   𝜑,𝑞,𝑥,𝑦,𝑧   𝑥,𝑟,𝑦
Allowed substitution hints:   𝜑(𝑟)   𝑈(𝑥,𝑦)   𝐿(𝑥,𝑦)

Proof of Theorem dedekindeulemloc
StepHypRef Expression
1 breq2 3965 . . . . 5 (𝑟 = 𝑦 → (𝑥 < 𝑟𝑥 < 𝑦))
2 eleq1w 2215 . . . . . 6 (𝑟 = 𝑦 → (𝑟𝑈𝑦𝑈))
32orbi2d 780 . . . . 5 (𝑟 = 𝑦 → ((𝑥𝐿𝑟𝑈) ↔ (𝑥𝐿𝑦𝑈)))
41, 3imbi12d 233 . . . 4 (𝑟 = 𝑦 → ((𝑥 < 𝑟 → (𝑥𝐿𝑟𝑈)) ↔ (𝑥 < 𝑦 → (𝑥𝐿𝑦𝑈))))
5 breq1 3964 . . . . . . 7 (𝑞 = 𝑥 → (𝑞 < 𝑟𝑥 < 𝑟))
6 eleq1w 2215 . . . . . . . 8 (𝑞 = 𝑥 → (𝑞𝐿𝑥𝐿))
76orbi1d 781 . . . . . . 7 (𝑞 = 𝑥 → ((𝑞𝐿𝑟𝑈) ↔ (𝑥𝐿𝑟𝑈)))
85, 7imbi12d 233 . . . . . 6 (𝑞 = 𝑥 → ((𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)) ↔ (𝑥 < 𝑟 → (𝑥𝐿𝑟𝑈))))
98ralbidv 2454 . . . . 5 (𝑞 = 𝑥 → (∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)) ↔ ∀𝑟 ∈ ℝ (𝑥 < 𝑟 → (𝑥𝐿𝑟𝑈))))
10 dedekindeu.loc . . . . . 6 (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
1110adantr 274 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
12 simprl 521 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
139, 11, 12rspcdva 2818 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑟 ∈ ℝ (𝑥 < 𝑟 → (𝑥𝐿𝑟𝑈)))
14 simprr 522 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
154, 13, 14rspcdva 2818 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 < 𝑦 → (𝑥𝐿𝑦𝑈)))
16 simpr 109 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑥𝐿) → 𝑥𝐿)
175rexbidv 2455 . . . . . . . . 9 (𝑞 = 𝑥 → (∃𝑟𝐿 𝑞 < 𝑟 ↔ ∃𝑟𝐿 𝑥 < 𝑟))
186, 17bibi12d 234 . . . . . . . 8 (𝑞 = 𝑥 → ((𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟) ↔ (𝑥𝐿 ↔ ∃𝑟𝐿 𝑥 < 𝑟)))
19 dedekindeu.lr . . . . . . . . 9 (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
2019ad2antrr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑥𝐿) → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
2112adantr 274 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑥𝐿) → 𝑥 ∈ ℝ)
2218, 20, 21rspcdva 2818 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑥𝐿) → (𝑥𝐿 ↔ ∃𝑟𝐿 𝑥 < 𝑟))
2316, 22mpbid 146 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑥𝐿) → ∃𝑟𝐿 𝑥 < 𝑟)
24 breq2 3965 . . . . . . 7 (𝑟 = 𝑧 → (𝑥 < 𝑟𝑥 < 𝑧))
2524cbvrexv 2678 . . . . . 6 (∃𝑟𝐿 𝑥 < 𝑟 ↔ ∃𝑧𝐿 𝑥 < 𝑧)
2623, 25sylib 121 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑥𝐿) → ∃𝑧𝐿 𝑥 < 𝑧)
2726ex 114 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝐿 → ∃𝑧𝐿 𝑥 < 𝑧))
28 dedekindeu.lss . . . . . . 7 (𝜑𝐿 ⊆ ℝ)
2928ad2antrr 480 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦𝑈) → 𝐿 ⊆ ℝ)
30 dedekindeu.uss . . . . . . 7 (𝜑𝑈 ⊆ ℝ)
3130ad2antrr 480 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦𝑈) → 𝑈 ⊆ ℝ)
32 dedekindeu.lm . . . . . . 7 (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)
3332ad2antrr 480 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦𝑈) → ∃𝑞 ∈ ℝ 𝑞𝐿)
34 dedekindeu.um . . . . . . 7 (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)
3534ad2antrr 480 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦𝑈) → ∃𝑟 ∈ ℝ 𝑟𝑈)
3619ad2antrr 480 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦𝑈) → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
37 dedekindeu.ur . . . . . . 7 (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
3837ad2antrr 480 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦𝑈) → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
39 dedekindeu.disj . . . . . . 7 (𝜑 → (𝐿𝑈) = ∅)
4039ad2antrr 480 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦𝑈) → (𝐿𝑈) = ∅)
4110ad2antrr 480 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦𝑈) → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
42 simpr 109 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦𝑈) → 𝑦𝑈)
4329, 31, 33, 35, 36, 38, 40, 41, 42dedekindeulemuub 12942 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦𝑈) → ∀𝑧𝐿 𝑧 < 𝑦)
4443ex 114 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑦𝑈 → ∀𝑧𝐿 𝑧 < 𝑦))
4527, 44orim12d 776 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝐿𝑦𝑈) → (∃𝑧𝐿 𝑥 < 𝑧 ∨ ∀𝑧𝐿 𝑧 < 𝑦)))
4615, 45syld 45 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 < 𝑦 → (∃𝑧𝐿 𝑥 < 𝑧 ∨ ∀𝑧𝐿 𝑧 < 𝑦)))
4746ralrimivva 2536 1 (𝜑 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐿 𝑥 < 𝑧 ∨ ∀𝑧𝐿 𝑧 < 𝑦)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 698   = wceq 1332   ∈ wcel 2125  ∀wral 2432  ∃wrex 2433   ∩ cin 3097   ⊆ wss 3098  ∅c0 3390   class class class wbr 3961  ℝcr 7710   < clt 7891 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-cnex 7802  ax-resscn 7803  ax-pre-ltwlin 7824 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-rab 2441  df-v 2711  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-opab 4022  df-xp 4585  df-cnv 4587  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897 This theorem is referenced by:  dedekindeulemlub  12945
 Copyright terms: Public domain W3C validator