Proof of Theorem dedekindeulemloc
Step | Hyp | Ref
| Expression |
1 | | breq2 3993 |
. . . . 5
⊢ (𝑟 = 𝑦 → (𝑥 < 𝑟 ↔ 𝑥 < 𝑦)) |
2 | | eleq1w 2231 |
. . . . . 6
⊢ (𝑟 = 𝑦 → (𝑟 ∈ 𝑈 ↔ 𝑦 ∈ 𝑈)) |
3 | 2 | orbi2d 785 |
. . . . 5
⊢ (𝑟 = 𝑦 → ((𝑥 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈) ↔ (𝑥 ∈ 𝐿 ∨ 𝑦 ∈ 𝑈))) |
4 | 1, 3 | imbi12d 233 |
. . . 4
⊢ (𝑟 = 𝑦 → ((𝑥 < 𝑟 → (𝑥 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)) ↔ (𝑥 < 𝑦 → (𝑥 ∈ 𝐿 ∨ 𝑦 ∈ 𝑈)))) |
5 | | breq1 3992 |
. . . . . . 7
⊢ (𝑞 = 𝑥 → (𝑞 < 𝑟 ↔ 𝑥 < 𝑟)) |
6 | | eleq1w 2231 |
. . . . . . . 8
⊢ (𝑞 = 𝑥 → (𝑞 ∈ 𝐿 ↔ 𝑥 ∈ 𝐿)) |
7 | 6 | orbi1d 786 |
. . . . . . 7
⊢ (𝑞 = 𝑥 → ((𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈) ↔ (𝑥 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
8 | 5, 7 | imbi12d 233 |
. . . . . 6
⊢ (𝑞 = 𝑥 → ((𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)) ↔ (𝑥 < 𝑟 → (𝑥 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)))) |
9 | 8 | ralbidv 2470 |
. . . . 5
⊢ (𝑞 = 𝑥 → (∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)) ↔ ∀𝑟 ∈ ℝ (𝑥 < 𝑟 → (𝑥 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)))) |
10 | | dedekindeu.loc |
. . . . . 6
⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
11 | 10 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
12 | | simprl 526 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ) |
13 | 9, 11, 12 | rspcdva 2839 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑟 ∈ ℝ (𝑥 < 𝑟 → (𝑥 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
14 | | simprr 527 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ) |
15 | 4, 13, 14 | rspcdva 2839 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 < 𝑦 → (𝑥 ∈ 𝐿 ∨ 𝑦 ∈ 𝑈))) |
16 | | simpr 109 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑥 ∈ 𝐿) → 𝑥 ∈ 𝐿) |
17 | 5 | rexbidv 2471 |
. . . . . . . . 9
⊢ (𝑞 = 𝑥 → (∃𝑟 ∈ 𝐿 𝑞 < 𝑟 ↔ ∃𝑟 ∈ 𝐿 𝑥 < 𝑟)) |
18 | 6, 17 | bibi12d 234 |
. . . . . . . 8
⊢ (𝑞 = 𝑥 → ((𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟) ↔ (𝑥 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑥 < 𝑟))) |
19 | | dedekindeu.lr |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
20 | 19 | ad2antrr 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑥 ∈ 𝐿) → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
21 | 12 | adantr 274 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑥 ∈ 𝐿) → 𝑥 ∈ ℝ) |
22 | 18, 20, 21 | rspcdva 2839 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑥 ∈ 𝐿) → (𝑥 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑥 < 𝑟)) |
23 | 16, 22 | mpbid 146 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑥 ∈ 𝐿) → ∃𝑟 ∈ 𝐿 𝑥 < 𝑟) |
24 | | breq2 3993 |
. . . . . . 7
⊢ (𝑟 = 𝑧 → (𝑥 < 𝑟 ↔ 𝑥 < 𝑧)) |
25 | 24 | cbvrexv 2697 |
. . . . . 6
⊢
(∃𝑟 ∈
𝐿 𝑥 < 𝑟 ↔ ∃𝑧 ∈ 𝐿 𝑥 < 𝑧) |
26 | 23, 25 | sylib 121 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑥 ∈ 𝐿) → ∃𝑧 ∈ 𝐿 𝑥 < 𝑧) |
27 | 26 | ex 114 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 ∈ 𝐿 → ∃𝑧 ∈ 𝐿 𝑥 < 𝑧)) |
28 | | dedekindeu.lss |
. . . . . . 7
⊢ (𝜑 → 𝐿 ⊆ ℝ) |
29 | 28 | ad2antrr 485 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦 ∈ 𝑈) → 𝐿 ⊆ ℝ) |
30 | | dedekindeu.uss |
. . . . . . 7
⊢ (𝜑 → 𝑈 ⊆ ℝ) |
31 | 30 | ad2antrr 485 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦 ∈ 𝑈) → 𝑈 ⊆ ℝ) |
32 | | dedekindeu.lm |
. . . . . . 7
⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) |
33 | 32 | ad2antrr 485 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦 ∈ 𝑈) → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿) |
34 | | dedekindeu.um |
. . . . . . 7
⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) |
35 | 34 | ad2antrr 485 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦 ∈ 𝑈) → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈) |
36 | 19 | ad2antrr 485 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦 ∈ 𝑈) → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
37 | | dedekindeu.ur |
. . . . . . 7
⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
38 | 37 | ad2antrr 485 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦 ∈ 𝑈) → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟)) |
39 | | dedekindeu.disj |
. . . . . . 7
⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) |
40 | 39 | ad2antrr 485 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦 ∈ 𝑈) → (𝐿 ∩ 𝑈) = ∅) |
41 | 10 | ad2antrr 485 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦 ∈ 𝑈) → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) |
42 | | simpr 109 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦 ∈ 𝑈) → 𝑦 ∈ 𝑈) |
43 | 29, 31, 33, 35, 36, 38, 40, 41, 42 | dedekindeulemuub 13389 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ 𝑦 ∈ 𝑈) → ∀𝑧 ∈ 𝐿 𝑧 < 𝑦) |
44 | 43 | ex 114 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑦 ∈ 𝑈 → ∀𝑧 ∈ 𝐿 𝑧 < 𝑦)) |
45 | 27, 44 | orim12d 781 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 ∈ 𝐿 ∨ 𝑦 ∈ 𝑈) → (∃𝑧 ∈ 𝐿 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐿 𝑧 < 𝑦))) |
46 | 15, 45 | syld 45 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐿 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐿 𝑧 < 𝑦))) |
47 | 46 | ralrimivva 2552 |
1
⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐿 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐿 𝑧 < 𝑦))) |