ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecoviass GIF version

Theorem ecoviass 6532
Description: Lemma used to transfer an associative law via an equivalence relation. (Contributed by Jim Kingdon, 16-Sep-2019.)
Hypotheses
Ref Expression
ecoviass.1 𝐷 = ((𝑆 × 𝑆) / )
ecoviass.2 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = [⟨𝐺, 𝐻⟩] )
ecoviass.3 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] ) = [⟨𝑁, 𝑄⟩] )
ecoviass.4 (((𝐺𝑆𝐻𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝐺, 𝐻⟩] + [⟨𝑣, 𝑢⟩] ) = [⟨𝐽, 𝐾⟩] )
ecoviass.5 (((𝑥𝑆𝑦𝑆) ∧ (𝑁𝑆𝑄𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑁, 𝑄⟩] ) = [⟨𝐿, 𝑀⟩] )
ecoviass.6 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → (𝐺𝑆𝐻𝑆))
ecoviass.7 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (𝑁𝑆𝑄𝑆))
ecoviass.8 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → 𝐽 = 𝐿)
ecoviass.9 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → 𝐾 = 𝑀)
Assertion
Ref Expression
ecoviass ((𝐴𝐷𝐵𝐷𝐶𝐷) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝐴   𝑧,𝐵,𝑤,𝑣,𝑢   𝑥,𝐶,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥, + ,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥, ,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥,𝑆,𝑦,𝑧,𝑤,𝑣,𝑢   𝑧,𝐷,𝑤,𝑣,𝑢
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑄(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝐺(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝐻(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝐽(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝐾(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝐿(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝑀(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)

Proof of Theorem ecoviass
StepHypRef Expression
1 ecoviass.1 . 2 𝐷 = ((𝑆 × 𝑆) / )
2 oveq1 5774 . . . 4 ([⟨𝑥, 𝑦⟩] = 𝐴 → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = (𝐴 + [⟨𝑧, 𝑤⟩] ))
32oveq1d 5782 . . 3 ([⟨𝑥, 𝑦⟩] = 𝐴 → (([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) + [⟨𝑣, 𝑢⟩] ) = ((𝐴 + [⟨𝑧, 𝑤⟩] ) + [⟨𝑣, 𝑢⟩] ))
4 oveq1 5774 . . 3 ([⟨𝑥, 𝑦⟩] = 𝐴 → ([⟨𝑥, 𝑦⟩] + ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = (𝐴 + ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )))
53, 4eqeq12d 2152 . 2 ([⟨𝑥, 𝑦⟩] = 𝐴 → ((([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) + [⟨𝑣, 𝑢⟩] ) = ([⟨𝑥, 𝑦⟩] + ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) ↔ ((𝐴 + [⟨𝑧, 𝑤⟩] ) + [⟨𝑣, 𝑢⟩] ) = (𝐴 + ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] ))))
6 oveq2 5775 . . . 4 ([⟨𝑧, 𝑤⟩] = 𝐵 → (𝐴 + [⟨𝑧, 𝑤⟩] ) = (𝐴 + 𝐵))
76oveq1d 5782 . . 3 ([⟨𝑧, 𝑤⟩] = 𝐵 → ((𝐴 + [⟨𝑧, 𝑤⟩] ) + [⟨𝑣, 𝑢⟩] ) = ((𝐴 + 𝐵) + [⟨𝑣, 𝑢⟩] ))
8 oveq1 5774 . . . 4 ([⟨𝑧, 𝑤⟩] = 𝐵 → ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] ) = (𝐵 + [⟨𝑣, 𝑢⟩] ))
98oveq2d 5783 . . 3 ([⟨𝑧, 𝑤⟩] = 𝐵 → (𝐴 + ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = (𝐴 + (𝐵 + [⟨𝑣, 𝑢⟩] )))
107, 9eqeq12d 2152 . 2 ([⟨𝑧, 𝑤⟩] = 𝐵 → (((𝐴 + [⟨𝑧, 𝑤⟩] ) + [⟨𝑣, 𝑢⟩] ) = (𝐴 + ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) ↔ ((𝐴 + 𝐵) + [⟨𝑣, 𝑢⟩] ) = (𝐴 + (𝐵 + [⟨𝑣, 𝑢⟩] ))))
11 oveq2 5775 . . 3 ([⟨𝑣, 𝑢⟩] = 𝐶 → ((𝐴 + 𝐵) + [⟨𝑣, 𝑢⟩] ) = ((𝐴 + 𝐵) + 𝐶))
12 oveq2 5775 . . . 4 ([⟨𝑣, 𝑢⟩] = 𝐶 → (𝐵 + [⟨𝑣, 𝑢⟩] ) = (𝐵 + 𝐶))
1312oveq2d 5783 . . 3 ([⟨𝑣, 𝑢⟩] = 𝐶 → (𝐴 + (𝐵 + [⟨𝑣, 𝑢⟩] )) = (𝐴 + (𝐵 + 𝐶)))
1411, 13eqeq12d 2152 . 2 ([⟨𝑣, 𝑢⟩] = 𝐶 → (((𝐴 + 𝐵) + [⟨𝑣, 𝑢⟩] ) = (𝐴 + (𝐵 + [⟨𝑣, 𝑢⟩] )) ↔ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))))
15 ecoviass.8 . . . 4 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → 𝐽 = 𝐿)
16 ecoviass.9 . . . 4 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → 𝐾 = 𝑀)
17 opeq12 3702 . . . . 5 ((𝐽 = 𝐿𝐾 = 𝑀) → ⟨𝐽, 𝐾⟩ = ⟨𝐿, 𝑀⟩)
1817eceq1d 6458 . . . 4 ((𝐽 = 𝐿𝐾 = 𝑀) → [⟨𝐽, 𝐾⟩] = [⟨𝐿, 𝑀⟩] )
1915, 16, 18syl2anc 408 . . 3 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → [⟨𝐽, 𝐾⟩] = [⟨𝐿, 𝑀⟩] )
20 ecoviass.2 . . . . . . 7 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) = [⟨𝐺, 𝐻⟩] )
2120oveq1d 5782 . . . . . 6 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → (([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) + [⟨𝑣, 𝑢⟩] ) = ([⟨𝐺, 𝐻⟩] + [⟨𝑣, 𝑢⟩] ))
2221adantr 274 . . . . 5 ((((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑣𝑆𝑢𝑆)) → (([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) + [⟨𝑣, 𝑢⟩] ) = ([⟨𝐺, 𝐻⟩] + [⟨𝑣, 𝑢⟩] ))
23 ecoviass.6 . . . . . 6 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) → (𝐺𝑆𝐻𝑆))
24 ecoviass.4 . . . . . 6 (((𝐺𝑆𝐻𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝐺, 𝐻⟩] + [⟨𝑣, 𝑢⟩] ) = [⟨𝐽, 𝐾⟩] )
2523, 24sylan 281 . . . . 5 ((((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝐺, 𝐻⟩] + [⟨𝑣, 𝑢⟩] ) = [⟨𝐽, 𝐾⟩] )
2622, 25eqtrd 2170 . . . 4 ((((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑣𝑆𝑢𝑆)) → (([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) + [⟨𝑣, 𝑢⟩] ) = [⟨𝐽, 𝐾⟩] )
27263impa 1176 . . 3 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) + [⟨𝑣, 𝑢⟩] ) = [⟨𝐽, 𝐾⟩] )
28 ecoviass.3 . . . . . . 7 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] ) = [⟨𝑁, 𝑄⟩] )
2928oveq2d 5783 . . . . . 6 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑥, 𝑦⟩] + ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = ([⟨𝑥, 𝑦⟩] + [⟨𝑁, 𝑄⟩] ))
3029adantl 275 . . . . 5 (((𝑥𝑆𝑦𝑆) ∧ ((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆))) → ([⟨𝑥, 𝑦⟩] + ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = ([⟨𝑥, 𝑦⟩] + [⟨𝑁, 𝑄⟩] ))
31 ecoviass.7 . . . . . 6 (((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (𝑁𝑆𝑄𝑆))
32 ecoviass.5 . . . . . 6 (((𝑥𝑆𝑦𝑆) ∧ (𝑁𝑆𝑄𝑆)) → ([⟨𝑥, 𝑦⟩] + [⟨𝑁, 𝑄⟩] ) = [⟨𝐿, 𝑀⟩] )
3331, 32sylan2 284 . . . . 5 (((𝑥𝑆𝑦𝑆) ∧ ((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆))) → ([⟨𝑥, 𝑦⟩] + [⟨𝑁, 𝑄⟩] ) = [⟨𝐿, 𝑀⟩] )
3430, 33eqtrd 2170 . . . 4 (((𝑥𝑆𝑦𝑆) ∧ ((𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆))) → ([⟨𝑥, 𝑦⟩] + ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = [⟨𝐿, 𝑀⟩] )
35343impb 1177 . . 3 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → ([⟨𝑥, 𝑦⟩] + ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )) = [⟨𝐿, 𝑀⟩] )
3619, 27, 353eqtr4d 2180 . 2 (((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆) ∧ (𝑣𝑆𝑢𝑆)) → (([⟨𝑥, 𝑦⟩] + [⟨𝑧, 𝑤⟩] ) + [⟨𝑣, 𝑢⟩] ) = ([⟨𝑥, 𝑦⟩] + ([⟨𝑧, 𝑤⟩] + [⟨𝑣, 𝑢⟩] )))
371, 5, 10, 14, 363ecoptocl 6511 1 ((𝐴𝐷𝐵𝐷𝐶𝐷) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wcel 1480  cop 3525   × cxp 4532  (class class class)co 5767  [cec 6420   / cqs 6421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-xp 4540  df-cnv 4542  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fv 5126  df-ov 5770  df-ec 6424  df-qs 6428
This theorem is referenced by:  addassnqg  7183  mulassnqg  7185  addasssrg  7557  mulasssrg  7559  axaddass  7673  axmulass  7674
  Copyright terms: Public domain W3C validator