ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  archpr Unicode version

Theorem archpr 7605
Description: For any positive real, there is an integer that is greater than it. This is also known as the "archimedean property". The integer  x is embedded into the reals as described at nnprlu 7515. (Contributed by Jim Kingdon, 22-Apr-2020.)
Assertion
Ref Expression
archpr  |-  ( A  e.  P.  ->  E. x  e.  N.  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
Distinct variable group:    A, l, u, x

Proof of Theorem archpr
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7437 . . 3  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
2 prmu 7440 . . 3  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. z  e.  Q.  z  e.  ( 2nd `  A ) )
31, 2syl 14 . 2  |-  ( A  e.  P.  ->  E. z  e.  Q.  z  e.  ( 2nd `  A ) )
4 archnqq 7379 . . . 4  |-  ( z  e.  Q.  ->  E. x  e.  N.  z  <Q  [ <. x ,  1o >. ]  ~Q  )
54ad2antrl 487 . . 3  |-  ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  ->  E. x  e.  N.  z  <Q  [ <. x ,  1o >. ]  ~Q  )
6 simprl 526 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  ->  z  e.  Q. )
76ad2antrr 485 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  z  e.  Q. )
8 simprr 527 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  ->  z  e.  ( 2nd `  A ) )
98ad2antrr 485 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  z  e.  ( 2nd `  A ) )
10 simpr 109 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  z  <Q  [ <. x ,  1o >. ]  ~Q  )
11 vex 2733 . . . . . . . . 9  |-  z  e. 
_V
12 breq1 3992 . . . . . . . . 9  |-  ( l  =  z  ->  (
l  <Q  [ <. x ,  1o >. ]  ~Q  <->  z  <Q  [
<. x ,  1o >. ]  ~Q  ) )
13 ltnqex 7511 . . . . . . . . . 10  |-  { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  }  e.  _V
14 gtnqex 7512 . . . . . . . . . 10  |-  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u }  e.  _V
1513, 14op1st 6125 . . . . . . . . 9  |-  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )  =  { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  }
1611, 12, 15elab2 2878 . . . . . . . 8  |-  ( z  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )  <->  z  <Q  [ <. x ,  1o >. ]  ~Q  )
1710, 16sylibr 133 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  z  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) )
18 eleq1 2233 . . . . . . . . 9  |-  ( w  =  z  ->  (
w  e.  ( 2nd `  A )  <->  z  e.  ( 2nd `  A ) ) )
19 eleq1 2233 . . . . . . . . 9  |-  ( w  =  z  ->  (
w  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )  <->  z  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) )
2018, 19anbi12d 470 . . . . . . . 8  |-  ( w  =  z  ->  (
( w  e.  ( 2nd `  A )  /\  w  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) )  <->  ( z  e.  ( 2nd `  A
)  /\  z  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) ) )
2120rspcev 2834 . . . . . . 7  |-  ( ( z  e.  Q.  /\  ( z  e.  ( 2nd `  A )  /\  z  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) )  ->  E. w  e.  Q.  ( w  e.  ( 2nd `  A )  /\  w  e.  ( 1st ` 
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) )
227, 9, 17, 21syl12anc 1231 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  E. w  e.  Q.  ( w  e.  ( 2nd `  A )  /\  w  e.  ( 1st ` 
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) )
23 simplll 528 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  A  e.  P. )
24 nnprlu 7515 . . . . . . . 8  |-  ( x  e.  N.  ->  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
2524ad2antlr 486 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
26 ltdfpr 7468 . . . . . . 7  |-  ( ( A  e.  P.  /\  <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )  -> 
( A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. 
<->  E. w  e.  Q.  ( w  e.  ( 2nd `  A )  /\  w  e.  ( 1st ` 
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) ) )
2723, 25, 26syl2anc 409 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  ( A  <P  <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  <->  E. w  e.  Q.  ( w  e.  ( 2nd `  A )  /\  w  e.  ( 1st ` 
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) ) )
2822, 27mpbird 166 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
2928ex 114 . . . 4  |-  ( ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  /\  x  e.  N. )  ->  ( z  <Q  [ <. x ,  1o >. ]  ~Q  ->  A  <P 
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) )
3029reximdva 2572 . . 3  |-  ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  ->  ( E. x  e.  N.  z  <Q  [ <. x ,  1o >. ]  ~Q  ->  E. x  e.  N.  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) )
315, 30mpd 13 . 2  |-  ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  ->  E. x  e.  N.  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
323, 31rexlimddv 2592 1  |-  ( A  e.  P.  ->  E. x  e.  N.  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2141   {cab 2156   E.wrex 2449   <.cop 3586   class class class wbr 3989   ` cfv 5198   1stc1st 6117   2ndc2nd 6118   1oc1o 6388   [cec 6511   N.cnpi 7234    ~Q ceq 7241   Q.cnq 7242    <Q cltq 7247   P.cnp 7253    <P cltp 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-inp 7428  df-iltp 7432
This theorem is referenced by:  archsr  7744
  Copyright terms: Public domain W3C validator