ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  archpr Unicode version

Theorem archpr 7644
Description: For any positive real, there is an integer that is greater than it. This is also known as the "archimedean property". The integer  x is embedded into the reals as described at nnprlu 7554. (Contributed by Jim Kingdon, 22-Apr-2020.)
Assertion
Ref Expression
archpr  |-  ( A  e.  P.  ->  E. x  e.  N.  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
Distinct variable group:    A, l, u, x

Proof of Theorem archpr
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7476 . . 3  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
2 prmu 7479 . . 3  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. z  e.  Q.  z  e.  ( 2nd `  A ) )
31, 2syl 14 . 2  |-  ( A  e.  P.  ->  E. z  e.  Q.  z  e.  ( 2nd `  A ) )
4 archnqq 7418 . . . 4  |-  ( z  e.  Q.  ->  E. x  e.  N.  z  <Q  [ <. x ,  1o >. ]  ~Q  )
54ad2antrl 490 . . 3  |-  ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  ->  E. x  e.  N.  z  <Q  [ <. x ,  1o >. ]  ~Q  )
6 simprl 529 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  ->  z  e.  Q. )
76ad2antrr 488 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  z  e.  Q. )
8 simprr 531 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  ->  z  e.  ( 2nd `  A ) )
98ad2antrr 488 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  z  e.  ( 2nd `  A ) )
10 simpr 110 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  z  <Q  [ <. x ,  1o >. ]  ~Q  )
11 vex 2742 . . . . . . . . 9  |-  z  e. 
_V
12 breq1 4008 . . . . . . . . 9  |-  ( l  =  z  ->  (
l  <Q  [ <. x ,  1o >. ]  ~Q  <->  z  <Q  [
<. x ,  1o >. ]  ~Q  ) )
13 ltnqex 7550 . . . . . . . . . 10  |-  { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  }  e.  _V
14 gtnqex 7551 . . . . . . . . . 10  |-  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u }  e.  _V
1513, 14op1st 6149 . . . . . . . . 9  |-  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )  =  { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  }
1611, 12, 15elab2 2887 . . . . . . . 8  |-  ( z  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )  <->  z  <Q  [ <. x ,  1o >. ]  ~Q  )
1710, 16sylibr 134 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  z  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) )
18 eleq1 2240 . . . . . . . . 9  |-  ( w  =  z  ->  (
w  e.  ( 2nd `  A )  <->  z  e.  ( 2nd `  A ) ) )
19 eleq1 2240 . . . . . . . . 9  |-  ( w  =  z  ->  (
w  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )  <->  z  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) )
2018, 19anbi12d 473 . . . . . . . 8  |-  ( w  =  z  ->  (
( w  e.  ( 2nd `  A )  /\  w  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) )  <->  ( z  e.  ( 2nd `  A
)  /\  z  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) ) )
2120rspcev 2843 . . . . . . 7  |-  ( ( z  e.  Q.  /\  ( z  e.  ( 2nd `  A )  /\  z  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) )  ->  E. w  e.  Q.  ( w  e.  ( 2nd `  A )  /\  w  e.  ( 1st ` 
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) )
227, 9, 17, 21syl12anc 1236 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  E. w  e.  Q.  ( w  e.  ( 2nd `  A )  /\  w  e.  ( 1st ` 
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) )
23 simplll 533 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  A  e.  P. )
24 nnprlu 7554 . . . . . . . 8  |-  ( x  e.  N.  ->  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
2524ad2antlr 489 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
26 ltdfpr 7507 . . . . . . 7  |-  ( ( A  e.  P.  /\  <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )  -> 
( A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. 
<->  E. w  e.  Q.  ( w  e.  ( 2nd `  A )  /\  w  e.  ( 1st ` 
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) ) )
2723, 25, 26syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  ( A  <P  <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  <->  E. w  e.  Q.  ( w  e.  ( 2nd `  A )  /\  w  e.  ( 1st ` 
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) ) )
2822, 27mpbird 167 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
2928ex 115 . . . 4  |-  ( ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  /\  x  e.  N. )  ->  ( z  <Q  [ <. x ,  1o >. ]  ~Q  ->  A  <P 
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) )
3029reximdva 2579 . . 3  |-  ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  ->  ( E. x  e.  N.  z  <Q  [ <. x ,  1o >. ]  ~Q  ->  E. x  e.  N.  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) )
315, 30mpd 13 . 2  |-  ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  ->  E. x  e.  N.  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
323, 31rexlimddv 2599 1  |-  ( A  e.  P.  ->  E. x  e.  N.  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2148   {cab 2163   E.wrex 2456   <.cop 3597   class class class wbr 4005   ` cfv 5218   1stc1st 6141   2ndc2nd 6142   1oc1o 6412   [cec 6535   N.cnpi 7273    ~Q ceq 7280   Q.cnq 7281    <Q cltq 7286   P.cnp 7292    <P cltp 7296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-inp 7467  df-iltp 7471
This theorem is referenced by:  archsr  7783
  Copyright terms: Public domain W3C validator