| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > archpr | Unicode version | ||
| Description: For any positive real,
there is an integer that is greater than it.
This is also known as the "archimedean property". The integer
|
| Ref | Expression |
|---|---|
| archpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prop 7559 |
. . 3
| |
| 2 | prmu 7562 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | archnqq 7501 |
. . . 4
| |
| 5 | 4 | ad2antrl 490 |
. . 3
|
| 6 | simprl 529 |
. . . . . . . 8
| |
| 7 | 6 | ad2antrr 488 |
. . . . . . 7
|
| 8 | simprr 531 |
. . . . . . . 8
| |
| 9 | 8 | ad2antrr 488 |
. . . . . . 7
|
| 10 | simpr 110 |
. . . . . . . 8
| |
| 11 | vex 2766 |
. . . . . . . . 9
| |
| 12 | breq1 4037 |
. . . . . . . . 9
| |
| 13 | ltnqex 7633 |
. . . . . . . . . 10
| |
| 14 | gtnqex 7634 |
. . . . . . . . . 10
| |
| 15 | 13, 14 | op1st 6213 |
. . . . . . . . 9
|
| 16 | 11, 12, 15 | elab2 2912 |
. . . . . . . 8
|
| 17 | 10, 16 | sylibr 134 |
. . . . . . 7
|
| 18 | eleq1 2259 |
. . . . . . . . 9
| |
| 19 | eleq1 2259 |
. . . . . . . . 9
| |
| 20 | 18, 19 | anbi12d 473 |
. . . . . . . 8
|
| 21 | 20 | rspcev 2868 |
. . . . . . 7
|
| 22 | 7, 9, 17, 21 | syl12anc 1247 |
. . . . . 6
|
| 23 | simplll 533 |
. . . . . . 7
| |
| 24 | nnprlu 7637 |
. . . . . . . 8
| |
| 25 | 24 | ad2antlr 489 |
. . . . . . 7
|
| 26 | ltdfpr 7590 |
. . . . . . 7
| |
| 27 | 23, 25, 26 | syl2anc 411 |
. . . . . 6
|
| 28 | 22, 27 | mpbird 167 |
. . . . 5
|
| 29 | 28 | ex 115 |
. . . 4
|
| 30 | 29 | reximdva 2599 |
. . 3
|
| 31 | 5, 30 | mpd 13 |
. 2
|
| 32 | 3, 31 | rexlimddv 2619 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-1o 6483 df-oadd 6487 df-omul 6488 df-er 6601 df-ec 6603 df-qs 6607 df-ni 7388 df-pli 7389 df-mi 7390 df-lti 7391 df-plpq 7428 df-mpq 7429 df-enq 7431 df-nqqs 7432 df-plqqs 7433 df-mqqs 7434 df-1nqqs 7435 df-rq 7436 df-ltnqqs 7437 df-inp 7550 df-iltp 7554 |
| This theorem is referenced by: archsr 7866 |
| Copyright terms: Public domain | W3C validator |