ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  archpr Unicode version

Theorem archpr 7791
Description: For any positive real, there is an integer that is greater than it. This is also known as the "archimedean property". The integer  x is embedded into the reals as described at nnprlu 7701. (Contributed by Jim Kingdon, 22-Apr-2020.)
Assertion
Ref Expression
archpr  |-  ( A  e.  P.  ->  E. x  e.  N.  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
Distinct variable group:    A, l, u, x

Proof of Theorem archpr
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7623 . . 3  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
2 prmu 7626 . . 3  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. z  e.  Q.  z  e.  ( 2nd `  A ) )
31, 2syl 14 . 2  |-  ( A  e.  P.  ->  E. z  e.  Q.  z  e.  ( 2nd `  A ) )
4 archnqq 7565 . . . 4  |-  ( z  e.  Q.  ->  E. x  e.  N.  z  <Q  [ <. x ,  1o >. ]  ~Q  )
54ad2antrl 490 . . 3  |-  ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  ->  E. x  e.  N.  z  <Q  [ <. x ,  1o >. ]  ~Q  )
6 simprl 529 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  ->  z  e.  Q. )
76ad2antrr 488 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  z  e.  Q. )
8 simprr 531 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  ->  z  e.  ( 2nd `  A ) )
98ad2antrr 488 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  z  e.  ( 2nd `  A ) )
10 simpr 110 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  z  <Q  [ <. x ,  1o >. ]  ~Q  )
11 vex 2779 . . . . . . . . 9  |-  z  e. 
_V
12 breq1 4062 . . . . . . . . 9  |-  ( l  =  z  ->  (
l  <Q  [ <. x ,  1o >. ]  ~Q  <->  z  <Q  [
<. x ,  1o >. ]  ~Q  ) )
13 ltnqex 7697 . . . . . . . . . 10  |-  { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  }  e.  _V
14 gtnqex 7698 . . . . . . . . . 10  |-  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u }  e.  _V
1513, 14op1st 6255 . . . . . . . . 9  |-  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )  =  { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  }
1611, 12, 15elab2 2928 . . . . . . . 8  |-  ( z  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )  <->  z  <Q  [ <. x ,  1o >. ]  ~Q  )
1710, 16sylibr 134 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  z  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) )
18 eleq1 2270 . . . . . . . . 9  |-  ( w  =  z  ->  (
w  e.  ( 2nd `  A )  <->  z  e.  ( 2nd `  A ) ) )
19 eleq1 2270 . . . . . . . . 9  |-  ( w  =  z  ->  (
w  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )  <->  z  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) )
2018, 19anbi12d 473 . . . . . . . 8  |-  ( w  =  z  ->  (
( w  e.  ( 2nd `  A )  /\  w  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) )  <->  ( z  e.  ( 2nd `  A
)  /\  z  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) ) )
2120rspcev 2884 . . . . . . 7  |-  ( ( z  e.  Q.  /\  ( z  e.  ( 2nd `  A )  /\  z  e.  ( 1st `  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) )  ->  E. w  e.  Q.  ( w  e.  ( 2nd `  A )  /\  w  e.  ( 1st ` 
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) )
227, 9, 17, 21syl12anc 1248 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  E. w  e.  Q.  ( w  e.  ( 2nd `  A )  /\  w  e.  ( 1st ` 
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) )
23 simplll 533 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  A  e.  P. )
24 nnprlu 7701 . . . . . . . 8  |-  ( x  e.  N.  ->  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
2524ad2antlr 489 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
26 ltdfpr 7654 . . . . . . 7  |-  ( ( A  e.  P.  /\  <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )  -> 
( A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. 
<->  E. w  e.  Q.  ( w  e.  ( 2nd `  A )  /\  w  e.  ( 1st ` 
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) ) )
2723, 25, 26syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  ( A  <P  <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  <->  E. w  e.  Q.  ( w  e.  ( 2nd `  A )  /\  w  e.  ( 1st ` 
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) ) ) )
2822, 27mpbird 167 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A
) ) )  /\  x  e.  N. )  /\  z  <Q  [ <. x ,  1o >. ]  ~Q  )  ->  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
2928ex 115 . . . 4  |-  ( ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  /\  x  e.  N. )  ->  ( z  <Q  [ <. x ,  1o >. ]  ~Q  ->  A  <P 
<. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) )
3029reximdva 2610 . . 3  |-  ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  ->  ( E. x  e.  N.  z  <Q  [ <. x ,  1o >. ]  ~Q  ->  E. x  e.  N.  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. ) )
315, 30mpd 13 . 2  |-  ( ( A  e.  P.  /\  ( z  e.  Q.  /\  z  e.  ( 2nd `  A ) ) )  ->  E. x  e.  N.  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
323, 31rexlimddv 2630 1  |-  ( A  e.  P.  ->  E. x  e.  N.  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2178   {cab 2193   E.wrex 2487   <.cop 3646   class class class wbr 4059   ` cfv 5290   1stc1st 6247   2ndc2nd 6248   1oc1o 6518   [cec 6641   N.cnpi 7420    ~Q ceq 7427   Q.cnq 7428    <Q cltq 7433   P.cnp 7439    <P cltp 7443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-inp 7614  df-iltp 7618
This theorem is referenced by:  archsr  7930
  Copyright terms: Public domain W3C validator