| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > archpr | Unicode version | ||
| Description: For any positive real,
there is an integer that is greater than it.
       This is also known as the "archimedean property".  The integer
 | 
| Ref | Expression | 
|---|---|
| archpr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | prop 7542 | 
. . 3
 | |
| 2 | prmu 7545 | 
. . 3
 | |
| 3 | 1, 2 | syl 14 | 
. 2
 | 
| 4 | archnqq 7484 | 
. . . 4
 | |
| 5 | 4 | ad2antrl 490 | 
. . 3
 | 
| 6 | simprl 529 | 
. . . . . . . 8
 | |
| 7 | 6 | ad2antrr 488 | 
. . . . . . 7
 | 
| 8 | simprr 531 | 
. . . . . . . 8
 | |
| 9 | 8 | ad2antrr 488 | 
. . . . . . 7
 | 
| 10 | simpr 110 | 
. . . . . . . 8
 | |
| 11 | vex 2766 | 
. . . . . . . . 9
 | |
| 12 | breq1 4036 | 
. . . . . . . . 9
 | |
| 13 | ltnqex 7616 | 
. . . . . . . . . 10
 | |
| 14 | gtnqex 7617 | 
. . . . . . . . . 10
 | |
| 15 | 13, 14 | op1st 6204 | 
. . . . . . . . 9
 | 
| 16 | 11, 12, 15 | elab2 2912 | 
. . . . . . . 8
 | 
| 17 | 10, 16 | sylibr 134 | 
. . . . . . 7
 | 
| 18 | eleq1 2259 | 
. . . . . . . . 9
 | |
| 19 | eleq1 2259 | 
. . . . . . . . 9
 | |
| 20 | 18, 19 | anbi12d 473 | 
. . . . . . . 8
 | 
| 21 | 20 | rspcev 2868 | 
. . . . . . 7
 | 
| 22 | 7, 9, 17, 21 | syl12anc 1247 | 
. . . . . 6
 | 
| 23 | simplll 533 | 
. . . . . . 7
 | |
| 24 | nnprlu 7620 | 
. . . . . . . 8
 | |
| 25 | 24 | ad2antlr 489 | 
. . . . . . 7
 | 
| 26 | ltdfpr 7573 | 
. . . . . . 7
 | |
| 27 | 23, 25, 26 | syl2anc 411 | 
. . . . . 6
 | 
| 28 | 22, 27 | mpbird 167 | 
. . . . 5
 | 
| 29 | 28 | ex 115 | 
. . . 4
 | 
| 30 | 29 | reximdva 2599 | 
. . 3
 | 
| 31 | 5, 30 | mpd 13 | 
. 2
 | 
| 32 | 3, 31 | rexlimddv 2619 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 df-inp 7533 df-iltp 7537 | 
| This theorem is referenced by: archsr 7849 | 
| Copyright terms: Public domain | W3C validator |